IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i7p1393-d221801.html
   My bibliography  Save this article

Three Vectors Model Predictive Torque Control Without Weighting Factor Based on Electromagnetic Torque Feedback Compensation

Author

Listed:
  • Haixia Li

    (Department of Mechanical and Control Engineering, Guilin University of Technology, Guilin 541000, China)

  • Jican Lin

    (Department of Mechanical and Control Engineering, Guilin University of Technology, Guilin 541000, China)

  • Ziguang Lu

    (College of Electrical Engineering, Guangxi University, Nanning 530004, China)

Abstract

Finite control set-model predictive torque control (FCS-MPTC) depends on the system parameters and the weight coefficients setting. At the same time, since the actual load disturbance is unavoidable, the model parameters are not matched, and there is a torque tracking error. In traditional FCS-MPTC, the outer loop—that is, the speed loop—adopts a classic Proportional Integral (PI) controller, abbreviated as PI-MPTC. The pole placement of the PI controller is usually designed by a plunge-and-test, and it is difficult to achieve optimal dynamic performance and optimal suppression of concentrated disturbances at the same time. Aiming at squirrel cage induction motors, this paper first proposes an outer-loop F-ETFC-MPTC control strategy based on a feed-forward factor for electromagnetic torque feedback compensation (F-ETFC). The electromagnetic torque was imported to the input of the current regulator, which is used as the control input signal of feedback compensation of the speed loop; therefore, the capacity of an anti-load-torque-disturbance of the speed loop was improved. The given speed is quantified by a feed-forward factor into the input of the current regulator, which is used as the feed-forward adjustment control input of the speed controller to improve the dynamic response of the speed loop. The range of the feed-forward factor and feed-back compensation coefficient can be obtained according to the structural analysis of the system, which simplifies the process of parameter design adjustment. At the same time, the multi-objective optimization based on the sorting method replaces the single cost function in traditional control, so that the selection of the voltage vector works without the weight coefficient and can solve complicated calculation problems in traditional control. Finally, according to the relationship between the voltage vector and the switch state, the virtual six groups of three vector voltages can be adjusted in both the direction and amplitude, thereby effectively improving the control performance and reducing the flow rate and torque ripple. The experiment is based on the dSPACE platform, and experimental results verify the feasibility of the proposed F-ETFC-MPTC. Compared with traditional PI-MPTC, the feed-forward factor can effectively improve the stability time of the system by more than 10 percent, electromagnetic torque feedback compensation can improve the anti-load torque disturbance ability of the system by more than 60 percent, and the three-vector voltage method can effectively reduce the disturbance.

Suggested Citation

  • Haixia Li & Jican Lin & Ziguang Lu, 2019. "Three Vectors Model Predictive Torque Control Without Weighting Factor Based on Electromagnetic Torque Feedback Compensation," Energies, MDPI, vol. 12(7), pages 1-19, April.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:7:p:1393-:d:221801
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/7/1393/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/7/1393/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jilong Zhao & Xiaowei Quan & Mengdie Jing & Mingyao Lin & Nian Li, 2018. "Design, Analysis and Model Predictive Control of an Axial Field Switched-Flux Permanent Magnet Machine for Electric Vehicle/Hybrid Electric Vehicle Applications," Energies, MDPI, vol. 11(7), pages 1-22, July.
    2. Fengxiang Wang & Zhenbin Zhang & Xuezhu Mei & José Rodríguez & Ralph Kennel, 2018. "Advanced Control Strategies of Induction Machine: Field Oriented Control, Direct Torque Control and Model Predictive Control," Energies, MDPI, vol. 11(1), pages 1-13, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhanqing Zhou & Xin Gu & Zhiqiang Wang & Guozheng Zhang & Qiang Geng, 2019. "An Improved Torque Control Strategy of PMSM Drive Considering On-Line MTPA Operation," Energies, MDPI, vol. 12(15), pages 1-17, July.
    2. Hamdi Echeikh & Mahmoud A. Mossa & Nguyen Vu Quynh & Abdelsalam A. Ahmed & Hassan Haes Alhelou, 2021. "Enhancement of Induction Motor Dynamics Using a Novel Sensorless Predictive Control Algorithm," Energies, MDPI, vol. 14(14), pages 1-28, July.
    3. Shu Xiong & Jian Pan & Yucui Yang, 2022. "Robust Decoupling Vector Control of Interior Permanent Magnet Synchronous Motor Used in Electric Vehicles with Reduced Parameter Mismatch Impacts," Sustainability, MDPI, vol. 14(19), pages 1-16, September.
    4. Zhicheng Liu & Yang Zhao, 2019. "Robust Perturbation Observer-based Finite Control Set Model Predictive Current Control for SPMSM Considering Parameter Mismatch," Energies, MDPI, vol. 12(19), pages 1-18, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sofiane Bacha & Ramzi Saadi & Mohamed Yacine Ayad & Mohamed Sahraoui & Khaled Laadjal & Antonio J. Marques Cardoso, 2023. "Autonomous Electric-Vehicle Control Using Speed Planning Algorithm and Back-Stepping Approach," Energies, MDPI, vol. 16(5), pages 1-26, March.
    2. Kodkin Vladimir & Anikin Alexander, 2021. "On the Physical Nature of Frequency Control Problems of Induction Motor Drives," Energies, MDPI, vol. 14(14), pages 1-15, July.
    3. Ahmed G. Mahmoud A. Aziz & Almoataz Y. Abdelaziz & Ziad M. Ali & Ahmed A. Zaki Diab, 2023. "A Comprehensive Examination of Vector-Controlled Induction Motor Drive Techniques," Energies, MDPI, vol. 16(6), pages 1-32, March.
    4. Karol Wróbel & Piotr Serkies & Krzysztof Szabat, 2020. "Model Predictive Base Direct Speed Control of Induction Motor Drive—Continuous and Finite Set Approaches," Energies, MDPI, vol. 13(5), pages 1-15, March.
    5. Zhanqing Zhou & Xin Gu & Zhiqiang Wang & Guozheng Zhang & Qiang Geng, 2019. "An Improved Torque Control Strategy of PMSM Drive Considering On-Line MTPA Operation," Energies, MDPI, vol. 12(15), pages 1-17, July.
    6. Tadeusz Białoń & Roman Niestrój & Jarosław Michalak & Marian Pasko, 2021. "Induction Motor PI Observer with Reduced-Order Integrating Unit," Energies, MDPI, vol. 14(16), pages 1-12, August.
    7. Cheng-Kai Lin & Jen-te Yu & Hao-Qun Huang & Jyun-Ting Wang & Hsing-Cheng Yu & Yen-Shin Lai, 2018. "A Dual-Voltage-Vector Model-Free Predictive Current Controller for Synchronous Reluctance Motor Drive Systems," Energies, MDPI, vol. 11(7), pages 1-29, July.
    8. Yuzhe Zhang & Xiaodong Liu & Haitao Li & Zhenbin Zhang, 2023. "A Model Independent Predictive Control of PMSG Wind Turbine Systems with a New Mechanism to Update Variables," Energies, MDPI, vol. 16(9), pages 1-15, April.
    9. Chaymae Fahassa & Yassine Zahraoui & Mohammed Akherraz & Mohammed Kharrich & Ehab E. Elattar & Salah Kamel, 2022. "Induction Motor DTC Performance Improvement by Inserting Fuzzy Logic Controllers and Twelve-Sector Neural Network Switching Table," Mathematics, MDPI, vol. 10(9), pages 1-14, April.
    10. Edison Gundabattini & Arkadiusz Mystkowski & Adam Idzkowski & Raja Singh R. & Darius Gnanaraj Solomon, 2021. "Thermal Mapping of a High-Speed Electric Motor Used for Traction Applications and Analysis of Various Cooling Methods—A Review," Energies, MDPI, vol. 14(5), pages 1-32, March.
    11. Tadeusz Białoń & Marian Pasko & Roman Niestrój, 2020. "Developing Induction Motor State Observers with Increased Robustness," Energies, MDPI, vol. 13(20), pages 1-24, October.
    12. Camila Paes Salomon & Wilson Cesar Sant’Ana & Germano Lambert-Torres & Luiz Eduardo Borges da Silva & Erik Leandro Bonaldi & Levy Ely de Lacerda De Oliveira, 2018. "Comparison among Methods for Induction Motor Low-Intrusive Efficiency Evaluation Including a New AGT Approach with a Modified Stator Resistance," Energies, MDPI, vol. 11(4), pages 1-21, March.
    13. Habib Benbouhenni & Nicu Bizon, 2021. "Improved Rotor Flux and Torque Control Based on the Third-Order Sliding Mode Scheme Applied to the Asynchronous Generator for the Single-Rotor Wind Turbine," Mathematics, MDPI, vol. 9(18), pages 1-16, September.
    14. Yanis Hamoudi & Hocine Amimeur & Djamal Aouzellag & Maher G. M. Abdolrasol & Taha Selim Ustun, 2023. "Hyperparameter Bayesian Optimization of Gaussian Process Regression Applied in Speed-Sensorless Predictive Torque Control of an Autonomous Wind Energy Conversion System," Energies, MDPI, vol. 16(12), pages 1-19, June.
    15. Mostafa Ahmed & Ibrahim Harbi & Ralph Kennel & José Rodríguez & Mohamed Abdelrahem, 2022. "Evaluation of the Main Control Strategies for Grid-Connected PV Systems," Sustainability, MDPI, vol. 14(18), pages 1-20, September.
    16. Mohamed Derbeli & Cristian Napole & Oscar Barambones & Jesus Sanchez & Isidro Calvo & Pablo Fernández-Bustamante, 2021. "Maximum Power Point Tracking Techniques for Photovoltaic Panel: A Review and Experimental Applications," Energies, MDPI, vol. 14(22), pages 1-31, November.
    17. Thyago Estrabis & Gabriel Gentil & Raymundo Cordero, 2021. "Development of a Resolver-to-Digital Converter Based on Second-Order Difference Generalized Predictive Control," Energies, MDPI, vol. 14(2), pages 1-22, January.
    18. Ondrej Lipcak & Filip Baum & Jan Bauer, 2021. "Influence of Selected Non-Ideal Aspects on Active and Reactive Power MRAS for Stator and Rotor Resistance Estimation," Energies, MDPI, vol. 14(20), pages 1-19, October.
    19. Andrzej Chudzikiewicz & Igor Maciejewski & Tomasz Krzyżyński & Andrzej Krzyszkowski & Anna Stelmach, 2022. "Electric Drive Solution for Low-Floor City Transport Trams," Energies, MDPI, vol. 15(13), pages 1-18, June.
    20. Pavel Karlovsky & Jiri Lettl, 2018. "Induction Motor Drive Direct Torque Control and Predictive Torque Control Comparison Based on Switching Pattern Analysis," Energies, MDPI, vol. 11(7), pages 1-14, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:7:p:1393-:d:221801. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.