IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i19p3711-d271641.html
   My bibliography  Save this article

Robust Perturbation Observer-based Finite Control Set Model Predictive Current Control for SPMSM Considering Parameter Mismatch

Author

Listed:
  • Zhicheng Liu

    (School of Electrical and Electronic Engineering, Hubei University of Technology, Wuhan 430064, China)

  • Yang Zhao

    (School of Electrical and Electronic Engineering, Hubei University of Technology, Wuhan 430064, China)

Abstract

In order to improve the dynamics of the surface-mounted permanent magnet synchronous motors (SPMSM) used in servo systems, finite control set model predictive current control (FCS-MPCC) methods have been widely adopted. However, because the FCS-MPCC is a model-based strategy, its performance highly depends on the machine parameters, such as the winding resistance, inductance and flux linkage. Unfortunately, the parameter mismatch problem is common due to the measurement precision and environmental impacts (e.g., temperature). To enhance the robustness of the SPMSM FCS-MPCC systems, this paper proposes a Lundberg perturbation observer that is seldom used in the FCS model predictive control situations to remove the adverse effects caused by resistance and inductance mismatch. Firstly, the system model is established, and the FCS-MPCC mechanism is illustrated. Based on the machine model, the sensitivity of the control algorithm to the parameter mismatch is discussed. Then, the Luenberger perturbation observer that can estimate the general disturbance arising from the parameter uncertainties is developed, and the stability of the observer is analyzed by using the discrete pole assignment technique. Finally, the proposed disturbance observer is incorporated into the FCS-MPCC prediction plant model for real-time compensation. Both simulation and experiments are conducted on a three-phase SPMSM, verifying that the proposed strategy has marked control performance and strong robustness.

Suggested Citation

  • Zhicheng Liu & Yang Zhao, 2019. "Robust Perturbation Observer-based Finite Control Set Model Predictive Current Control for SPMSM Considering Parameter Mismatch," Energies, MDPI, vol. 12(19), pages 1-18, September.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:19:p:3711-:d:271641
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/19/3711/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/19/3711/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dazhi Wang & Tianqing Yuan & Xingyu Wang & Xinghua Wang & Yongliang Ni, 2019. "Performance Improvement of Servo Control System Driven by Novel PMSM-DTC Based On Fixed Sector Division Criterion," Energies, MDPI, vol. 12(11), pages 1-16, June.
    2. Haixia Li & Jican Lin & Ziguang Lu, 2019. "Three Vectors Model Predictive Torque Control Without Weighting Factor Based on Electromagnetic Torque Feedback Compensation," Energies, MDPI, vol. 12(7), pages 1-19, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shu Xiong & Jian Pan & Yucui Yang, 2022. "Robust Decoupling Vector Control of Interior Permanent Magnet Synchronous Motor Used in Electric Vehicles with Reduced Parameter Mismatch Impacts," Sustainability, MDPI, vol. 14(19), pages 1-16, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhanqing Zhou & Xin Gu & Zhiqiang Wang & Guozheng Zhang & Qiang Geng, 2019. "An Improved Torque Control Strategy of PMSM Drive Considering On-Line MTPA Operation," Energies, MDPI, vol. 12(15), pages 1-17, July.
    2. Hamdi Echeikh & Mahmoud A. Mossa & Nguyen Vu Quynh & Abdelsalam A. Ahmed & Hassan Haes Alhelou, 2021. "Enhancement of Induction Motor Dynamics Using a Novel Sensorless Predictive Control Algorithm," Energies, MDPI, vol. 14(14), pages 1-28, July.
    3. Shu Xiong & Jian Pan & Yucui Yang, 2022. "Robust Decoupling Vector Control of Interior Permanent Magnet Synchronous Motor Used in Electric Vehicles with Reduced Parameter Mismatch Impacts," Sustainability, MDPI, vol. 14(19), pages 1-16, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:19:p:3711-:d:271641. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.