IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i7p1274-d219460.html
   My bibliography  Save this article

Ground-Source Heat Pumps with Horizontal Heat Exchangers for Space Cooling in the Hot Tropical Climate of Thailand

Author

Listed:
  • Arif Widiatmojo

    (Renewable Research Center, National Institute of Advanced Industrial Science and Technology, Japan 2-2-9 Machiikedai, Koriyama-shi, Fukushima-ken 963-0298, Japan)

  • Sasimook Chokchai

    (Department of Geology, Faculty of Science, Chulalongkorn University 254 Phayathai Rd, Patumwan, Bangkok 10330, Thailand)

  • Isao Takashima

    (Mining Museum, Akita University, 43 Tegatahebino, Akita-shi, Akita-ken 010-0851, Japan)

  • Yohei Uchida

    (Renewable Research Center, National Institute of Advanced Industrial Science and Technology, Japan 2-2-9 Machiikedai, Koriyama-shi, Fukushima-ken 963-0298, Japan)

  • Kasumi Yasukawa

    (Renewable Research Center, National Institute of Advanced Industrial Science and Technology, Japan 2-2-9 Machiikedai, Koriyama-shi, Fukushima-ken 963-0298, Japan)

  • Srilert Chotpantarat

    (Department of Geology, Faculty of Science, Chulalongkorn University 254 Phayathai Rd, Patumwan, Bangkok 10330, Thailand
    Research Program on Controls of Hazardous Contaminants in Raw Water Resources for Water Scarcity Resilience, Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University, Bangkok 10330, Thailand
    Research Unit Control of Emerging Micropollutants in Environment, Chulalongkorn University, Bangkok 10330, Thailand)

  • Punya Charusiri

    (Department of Geology, Faculty of Science, Chulalongkorn University 254 Phayathai Rd, Patumwan, Bangkok 10330, Thailand
    Department of Mineral Resources (DMR) King Rama VI Road, Ratchatewi 10400, Bangkok)

Abstract

The cooling of spaces in tropical regions, such as Southeast Asia, consumes a lot of energy. Additionally, rapid population and economic growth are resulting in an increasing demand for space cooling. The ground-source heat pump has been proven a reliable, cost-effective, safe, and environmentally-friendly alternative for cooling and heating spaces in various countries. In tropical countries, the presumption that the ground-source heat pump may not provide better thermal performance than the normal air-source heat pump arises because the difference between ground and atmospheric temperatures is essentially low. This paper reports the potential use of a ground-source heat pump with horizontal heat exchangers in a tropical country—Thailand. Daily operational data of two ground-source heat pumps and an air-source heat pump during a two-month operation are analyzed and compared. Life cycle cost analysis and CO 2 emission estimation are adopted to evaluate the economic value of ground-source heat pump investment and potential CO 2 reduction through the use of ground-source heat pumps, in comparison with the case for air-source heat pumps. It was found that the ground-source heat pumps consume 17.1% and 18.4% less electricity than the air-source heat pump during this period. Local production of heat pumps and heat exchangers, as well as rapid regional economic growth, can be positive factors for future ground-source heat pump application, not only in Thailand but also southeast Asian countries.

Suggested Citation

  • Arif Widiatmojo & Sasimook Chokchai & Isao Takashima & Yohei Uchida & Kasumi Yasukawa & Srilert Chotpantarat & Punya Charusiri, 2019. "Ground-Source Heat Pumps with Horizontal Heat Exchangers for Space Cooling in the Hot Tropical Climate of Thailand," Energies, MDPI, vol. 12(7), pages 1-22, April.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:7:p:1274-:d:219460
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/7/1274/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/7/1274/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Agrawal, Kamal Kumar & Misra, Rohit & Yadav, Tejpal & Agrawal, Ghanshyam Das & Jamuwa, Doraj Kamal, 2018. "Experimental study to investigate the effect of water impregnation on thermal performance of earth air tunnel heat exchanger for summer cooling in hot and arid climate," Renewable Energy, Elsevier, vol. 120(C), pages 255-265.
    2. Pavel Neuberger & Radomír Adamovský & Michaela Šeďová, 2014. "Temperatures and Heat Flows in a Soil Enclosing a Slinky Horizontal Heat Exchanger," Energies, MDPI, vol. 7(2), pages 1-16, February.
    3. Mustafa Omer, Abdeen, 2008. "Ground-source heat pumps systems and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(2), pages 344-371, February.
    4. Khedari, J & Sangprajak, A & Hirunlabh, J, 2002. "Thailand climatic zones," Renewable Energy, Elsevier, vol. 25(2), pages 267-280.
    5. Vithayasrichareon, Peerapat & MacGill, Iain F., 2012. "Portfolio assessments for future generation investment in newly industrializing countries – A case study of Thailand," Energy, Elsevier, vol. 44(1), pages 1044-1058.
    6. Bertermann, D. & Klug, H. & Morper-Busch, L., 2015. "A pan-European planning basis for estimating the very shallow geothermal energy potentials," Renewable Energy, Elsevier, vol. 75(C), pages 335-347.
    7. Gan, Guohui, 2018. "Dynamic thermal performance of horizontal ground source heat pumps – The impact of coupled heat and moisture transfer," Energy, Elsevier, vol. 152(C), pages 877-887.
    8. Go, Gyu-Hyun & Lee, Seung-Rae & Yoon, Seok & Kim, Min-Jun, 2016. "Optimum design of horizontal ground-coupled heat pump systems using spiral-coil-loop heat exchangers," Applied Energy, Elsevier, vol. 162(C), pages 330-345.
    9. Tharinya Supasa & Shu-San Hsiau & Shih-Mo Lin & Wongkot Wongsapai & Jiunn-Chi Wu, 2017. "Household Energy Consumption Behaviour for Different Demographic Regions in Thailand from 2000 to 2010," Sustainability, MDPI, vol. 9(12), pages 1-22, December.
    10. Genchi, Yutaka & Kikegawa, Yukihiro & Inaba, Atsushi, 2002. "CO2 payback-time assessment of a regional-scale heating and cooling system using a ground source heat-pump in a high energy-consumption area in Tokyo," Applied Energy, Elsevier, vol. 71(3), pages 147-160, March.
    11. Chalhoub, Maha & Bernier, Michel & Coquet, Yves & Philippe, Mikael, 2017. "A simple heat and moisture transfer model to predict ground temperature for shallow ground heat exchangers," Renewable Energy, Elsevier, vol. 103(C), pages 295-307.
    12. Chua, K.J. & Chou, S.K. & Yang, W.M., 2010. "Advances in heat pump systems: A review," Applied Energy, Elsevier, vol. 87(12), pages 3611-3624, December.
    13. Go, Gyu-Hyun & Lee, Seung-Rae & N.V., Nikhil & Yoon, Seok, 2015. "A new performance evaluation algorithm for horizontal GCHPs (ground coupled heat pump systems) that considers rainfall infiltration," Energy, Elsevier, vol. 83(C), pages 766-777.
    14. Kojima, Michikazu & Watanabe, Mariko, 2016. "Effectiveness of promoting energy efficiency in Thailand -- the case of air conditioners," IDE Discussion Papers 577, Institute of Developing Economies, Japan External Trade Organization(JETRO).
    15. Saner, Dominik & Juraske, Ronnie & Kübert, Markus & Blum, Philipp & Hellweg, Stefanie & Bayer, Peter, 2010. "Is it only CO2 that matters? A life cycle perspective on shallow geothermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1798-1813, September.
    16. Bayer, Peter & Saner, Dominik & Bolay, Stephan & Rybach, Ladislaus & Blum, Philipp, 2012. "Greenhouse gas emission savings of ground source heat pump systems in Europe: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1256-1267.
    17. Sasimook Chokchai & Srilert Chotpantarat & Isao Takashima & Youhei Uchida & Arif Widiatmojo & Kasumi Yasukawa & Punya Charusiri, 2018. "A Pilot Study on Geothermal Heat Pump (GHP) Use for Cooling Operations, and on GHP Site Selection in Tropical Regions Based on a Case Study in Thailand," Energies, MDPI, vol. 11(9), pages 1-17, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adriana Greco & Edison Gundabattini & Darius Gnanaraj Solomon & Raja Singh Rassiah & Claudia Masselli, 2022. "A Review on Geothermal Renewable Energy Systems for Eco-Friendly Air-Conditioning," Energies, MDPI, vol. 15(15), pages 1-17, July.
    2. Rafał Figaj & Maciej Żołądek & Wojciech Goryl, 2020. "Dynamic Simulation and Energy Economic Analysis of a Household Hybrid Ground-Solar-Wind System Using TRNSYS Software," Energies, MDPI, vol. 13(14), pages 1-27, July.
    3. Kashif Irshad & Salem Algarni & Mohammad Tauheed Ahmad & Sayed Ameenuddin Irfan & Khairul Habib & Mostafa A.H. Abdelmohimen & Md. Hasan Zahir & Gulam Mohammed Sayeed Ahmed, 2019. "Microclimate Thermal Management Using Thermoelectric Air-Cooling Duct System Operated at Five Incremental Powers and its Effect on Sleep Adaptation of the Occupants," Energies, MDPI, vol. 12(19), pages 1-25, September.
    4. Sorranat Ratchawang & Srilert Chotpantarat & Sasimook Chokchai & Isao Takashima & Youhei Uchida & Punya Charusiri, 2022. "A Review of Ground Source Heat Pump Application for Space Cooling in Southeast Asia," Energies, MDPI, vol. 15(14), pages 1-18, July.
    5. Daniel Słyś & Kamil Pochwat & Dorian Czarniecki, 2020. "An Analysis of Waste Heat Recovery from Wastewater on Livestock and Agriculture Farms," Resources, MDPI, vol. 9(1), pages 1-19, January.
    6. Yutaro Shimada & Youhei Uchida & Isao Takashima & Srilert Chotpantarat & Arif Widiatmojo & Sasimook Chokchai & Punya Charusiri & Hideaki Kurishima & Koji Tokimatsu, 2020. "A Study on the Operational Condition of a Ground Source Heat Pump in Bangkok Based on a Field Experiment and Simulation," Energies, MDPI, vol. 13(1), pages 1-17, January.
    7. Onder Kul & Mehmet Nurettin Uğural, 2022. "Comparative Economic and Experimental Assessment of Air Source Heat Pump and Gas-fired boiler: A Case Study from Turkey," Sustainability, MDPI, vol. 14(21), pages 1-17, November.
    8. Shimada, Yutaro & Tokimatsu, Koji & Asawa, Takashi & Uchida, Youhei & Tomigashi, Akira & Kurishima, Hideaki, 2021. "Subsurface utilization as a heat sink for large-scale ground source heat pump: Case study in Bangkok, Thailand," Renewable Energy, Elsevier, vol. 180(C), pages 966-979.
    9. Chengkang Gao & Huan You & Mingyan Tian & Yang Wu, 2023. "Comprehensive Evaluation of Different Heating Modes in Northeast China," Sustainability, MDPI, vol. 15(18), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
    2. Karytsas, Spyridon & Choropanitis, Ioannis, 2017. "Barriers against and actions towards renewable energy technologies diffusion: A Principal Component Analysis for residential ground source heat pump (GSHP) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 252-271.
    3. Sivasakthivel, T. & Murugesan, K. & Sahoo, P.K., 2015. "Study of technical, economical and environmental viability of ground source heat pump system for Himalayan cities of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 452-462.
    4. Carvalho, Anabela Duarte & Mendrinos, Dimitris & De Almeida, Anibal T., 2015. "Ground source heat pump carbon emissions and primary energy reduction potential for heating in buildings in Europe—results of a case study in Portugal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 755-768.
    5. Sorranat Ratchawang & Srilert Chotpantarat & Sasimook Chokchai & Isao Takashima & Youhei Uchida & Punya Charusiri, 2022. "A Review of Ground Source Heat Pump Application for Space Cooling in Southeast Asia," Energies, MDPI, vol. 15(14), pages 1-18, July.
    6. Soni, Suresh Kumar & Pandey, Mukesh & Bartaria, Vishvendra Nath, 2016. "Hybrid ground coupled heat exchanger systems for space heating/cooling applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 724-738.
    7. Eloisa Di Sipio & David Bertermann, 2017. "Factors Influencing the Thermal Efficiency of Horizontal Ground Heat Exchangers," Energies, MDPI, vol. 10(11), pages 1-21, November.
    8. Aranzabal, Nordin & Martos, Julio & Steger, Hagen & Blum, Philipp & Soret, Jesús, 2019. "Temperature measurements along a vertical borehole heat exchanger: A method comparison," Renewable Energy, Elsevier, vol. 143(C), pages 1247-1258.
    9. Agrawal, Kamal Kumar & Misra, Rohit & Agrawal, Ghanshyam Das, 2020. "Improving the thermal performance of ground air heat exchanger system using sand-bentonite (in dry and wet condition) as backfilling material," Renewable Energy, Elsevier, vol. 146(C), pages 2008-2023.
    10. Mihalakakou, Giouli & Souliotis, Manolis & Papadaki, Maria & Halkos, George & Paravantis, John & Makridis, Sofoklis & Papaefthimiou, Spiros, 2022. "Applications of earth-to-air heat exchangers: A holistic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    11. Violante, Anna Carmela & Donato, Filippo & Guidi, Giambattista & Proposito, Marco, 2022. "Comparative life cycle assessment of the ground source heat pump vs air source heat pump," Renewable Energy, Elsevier, vol. 188(C), pages 1029-1037.
    12. Hou, Gaoyang & Taherian, Hessam & Song, Ying & Jiang, Wei & Chen, Diyi, 2022. "A systematic review on optimal analysis of horizontal heat exchangers in ground source heat pump systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    13. Hu, Jinzhong, 2017. "An improved analytical model for vertical borehole ground heat exchanger with multiple-layer substrates and groundwater flow," Applied Energy, Elsevier, vol. 202(C), pages 537-549.
    14. Tang, Fujiao & Nowamooz, Hossein, 2020. "Outlet temperatures of a slinky-type Horizontal Ground Heat Exchanger with the atmosphere-soil interaction," Renewable Energy, Elsevier, vol. 146(C), pages 705-718.
    15. Go, Gyu-Hyun & Lee, Seung-Rae & Yoon, Seok & Kim, Min-Jun, 2016. "Optimum design of horizontal ground-coupled heat pump systems using spiral-coil-loop heat exchangers," Applied Energy, Elsevier, vol. 162(C), pages 330-345.
    16. Aresti, Lazaros & Christodoulides, Paul & Florides, Georgios A., 2021. "An investigation on the environmental impact of various Ground Heat Exchangers configurations," Renewable Energy, Elsevier, vol. 171(C), pages 592-605.
    17. Cuny, Mathias & Lin, Jian & Siroux, Monica & Fond, Christophe, 2020. "Influence of rainfall events on the energy performance of an earth-air heat exchanger embedded in a multilayered soil," Renewable Energy, Elsevier, vol. 147(P2), pages 2664-2675.
    18. Sivasakthivel, T. & Murugesan, K. & Sahoo, P.K., 2014. "A study on energy and CO2 saving potential of ground source heat pump system in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 278-293.
    19. Bayer, Peter & Attard, Guillaume & Blum, Philipp & Menberg, Kathrin, 2019. "The geothermal potential of cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 106(C), pages 17-30.
    20. Michopoulos, A. & Zachariadis, T. & Kyriakis, N., 2013. "Operation characteristics and experience of a ground source heat pump system with a vertical ground heat exchanger," Energy, Elsevier, vol. 51(C), pages 349-357.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:7:p:1274-:d:219460. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.