IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i7p1218-d218131.html
   My bibliography  Save this article

Hydraulic Experiments on a Small-Scale Wave Energy Converter with an Unconventional Dummy Pto

Author

Listed:
  • Luca Martinelli

    (Department of Civil, Architectural and Environmental Engineering, Università di Padova, 35122 Padova, Italy)

  • Matteo Volpato

    (Department of Civil, Architectural and Environmental Engineering, Università di Padova, 35122 Padova, Italy)

  • Chiara Favaretto

    (Department of Civil, Architectural and Environmental Engineering, Università di Padova, 35122 Padova, Italy)

  • Piero Ruol

    (Department of Civil, Architectural and Environmental Engineering, Università di Padova, 35122 Padova, Italy)

Abstract

This paper investigates on a Wave Energy Converter (WEC) named Energy & Protection, 4th generation (EP4). The WEC couples the energy harvesting function with the purpose of protecting the coast from erosion. It is formed by a flap rolling with a single degree of freedom around a lower hinge. Small-scale tests were carried out in the wave flume of the maritime group of Padua University, aiming at the evaluation of the device efficiency. The test peculiarity is represented by the system used to simulate the Power Take Off (PTO). Such dummy PTO permits a free rotation of two degrees before engaging the shaft, allowing the flap to gain some inertia, and then applying a constant resistive moment. The EP4 was observed to reach a 35% efficiency, under short regular waves. The effects, in terms of coastal protection, are small but not negligible, at least for the shortest waves.

Suggested Citation

  • Luca Martinelli & Matteo Volpato & Chiara Favaretto & Piero Ruol, 2019. "Hydraulic Experiments on a Small-Scale Wave Energy Converter with an Unconventional Dummy Pto," Energies, MDPI, vol. 12(7), pages 1-12, March.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:7:p:1218-:d:218131
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/7/1218/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/7/1218/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Martinelli, Luca & Zanuttigh, Barbara & Kofoed, Jens Peter, 2011. "Selection of design power of wave energy converters based on wave basin experiments," Renewable Energy, Elsevier, vol. 36(11), pages 3124-3132.
    2. Vincenzo Franzitta & Pietro Catrini & Domenico Curto, 2017. "Wave Energy Assessment along Sicilian Coastline, Based on DEIM Point Absorber," Energies, MDPI, vol. 10(3), pages 1-15, March.
    3. Stefano Parmeggiani & Jens Peter Kofoed & Erik Friis-Madsen, 2013. "Experimental Study Related to the Mooring Design for the 1.5 MW Wave Dragon WEC Demonstrator at DanWEC," Energies, MDPI, vol. 6(4), pages 1-24, April.
    4. Laura Castro-Santos & Dina Silva & A. Rute Bento & Nadia Salvação & C. Guedes Soares, 2018. "Economic Feasibility of Wave Energy Farms in Portugal," Energies, MDPI, vol. 11(11), pages 1-16, November.
    5. Scott Beatty & Francesco Ferri & Bryce Bocking & Jens Peter Kofoed & Bradley Buckham, 2017. "Power Take-Off Simulation for Scale Model Testing of Wave Energy Converters," Energies, MDPI, vol. 10(7), pages 1-22, July.
    6. Pasquale Contestabile & Enrico Di Lauro & Mariano Buccino & Diego Vicinanza, 2016. "Economic Assessment of Overtopping BReakwater for Energy Conversion (OBREC): A Case Study in Western Australia," Sustainability, MDPI, vol. 9(1), pages 1-28, December.
    7. Liberti, Luca & Carillo, Adriana & Sannino, Gianmaria, 2013. "Wave energy resource assessment in the Mediterranean, the Italian perspective," Renewable Energy, Elsevier, vol. 50(C), pages 938-949.
    8. Amélie Têtu & Francesco Ferri & Morten Bech Kramer & Jørgen Hals Todalshaug, 2018. "Physical and Mathematical Modeling of a Wave Energy Converter Equipped with a Negative Spring Mechanism for Phase Control," Energies, MDPI, vol. 11(9), pages 1-23, September.
    9. Marco Negri & Stefano Malavasi, 2018. "Wave Energy Harnessing in Shallow Water through Oscillating Bodies," Energies, MDPI, vol. 11(10), pages 1-17, October.
    10. Luca Martinelli & Barbara Zanuttigh, 2018. "Effects of Mooring Compliancy on the Mooring Forces, Power Production, and Dynamics of a Floating Wave Activated Body Energy Converter," Energies, MDPI, vol. 11(12), pages 1-24, December.
    11. Luca Martinelli & Paolo Pezzutto & Piero Ruol, 2013. "Experimentally Based Model to Size the Geometry of a New OWC Device, with Reference to the Mediterranean Sea Wave Environment," Energies, MDPI, vol. 6(9), pages 1-25, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francesco Calise & Maria Vicidomini & Mário Costa & Qiuwang Wang & Poul Alberg Østergaard & Neven Duić, 2019. "Toward an Efficient and Sustainable Use of Energy in Industries and Cities," Energies, MDPI, vol. 12(16), pages 1-28, August.
    2. Luca Martinelli & Giulio Capovilla & Matteo Volpato & Piero Ruol & Chiara Favaretto & Eva Loukogeorgaki & Mauro Andriollo, 2023. "Experimental Investigation of a Hybrid Device Combining a Wave Energy Converter and a Floating Breakwater in a Wave Flume Equipped with a Controllable Actuator," Energies, MDPI, vol. 17(1), pages 1-18, December.
    3. Zitti, Gianluca & Brocchini, Maurizio, 2024. "The role of size and inertia on the hydrodynamics of a self-reacting heave single point absorber wave energy converter," Renewable Energy, Elsevier, vol. 229(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raúl Cascajo & Emilio García & Eduardo Quiles & Antonio Correcher & Francisco Morant, 2019. "Integration of Marine Wave Energy Converters into Seaports: A Case Study in the Port of Valencia," Energies, MDPI, vol. 12(5), pages 1-24, February.
    2. Seongho Ahn & Kevin A. Haas & Vincent S. Neary, 2020. "Dominant Wave Energy Systems and Conditional Wave Resource Characterization for Coastal Waters of the United States," Energies, MDPI, vol. 13(12), pages 1-26, June.
    3. Joan Pau Sierra & Ricard Castrillo & Marc Mestres & César Mösso & Piero Lionello & Luigi Marzo, 2020. "Impact of Climate Change on Wave Energy Resource in the Mediterranean Coast of Morocco," Energies, MDPI, vol. 13(11), pages 1-19, June.
    4. Amarouche, Khalid & Akpınar, Adem & Bachari, Nour El Islam & Houma, Fouzia, 2020. "Wave energy resource assessment along the Algerian coast based on 39-year wave hindcast," Renewable Energy, Elsevier, vol. 153(C), pages 840-860.
    5. Luca Martinelli & Paolo Pezzutto & Piero Ruol, 2013. "Experimentally Based Model to Size the Geometry of a New OWC Device, with Reference to the Mediterranean Sea Wave Environment," Energies, MDPI, vol. 6(9), pages 1-25, September.
    6. Xu, Sheng & Wang, Shan & Guedes Soares, C., 2019. "Review of mooring design for floating wave energy converters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 595-621.
    7. Memmola, Francesco & Contestabile, Pasquale & Falco, Pierpaolo & Brocchini, Maurizio, 2024. "Test Reference Year for wave energy studies: Generation and validation," Renewable Energy, Elsevier, vol. 224(C).
    8. Domenico Curto & Vincenzo Franzitta & Andrea Guercio, 2021. "Sea Wave Energy. A Review of the Current Technologies and Perspectives," Energies, MDPI, vol. 14(20), pages 1-31, October.
    9. Zanuttigh, Barbara & Angelelli, Elisa & Kortenhaus, Andreas & Koca, Kaan & Krontira, Yukiko & Koundouri, Phoebe, 2016. "A methodology for multi-criteria design of multi-use offshore platforms for marine renewable energy harvesting," Renewable Energy, Elsevier, vol. 85(C), pages 1271-1289.
    10. Qiao Li & Motohiko Murai & Syu Kuwada, 2018. "A Study on Electrical Power for Multiple Linear Wave Energy Converter Considering the Interaction Effect," Energies, MDPI, vol. 11(11), pages 1-20, November.
    11. Yang, Zhaoqing & García Medina, Gabriel & Neary, Vincent S. & Ahn, Seongho & Kilcher, Levi & Bharath, Aidan, 2023. "Multi-decade high-resolution regional hindcasts for wave energy resource characterization in U.S. coastal waters," Renewable Energy, Elsevier, vol. 212(C), pages 803-817.
    12. Chenglong Guo & Wanan Sheng & Dakshina G. De Silva & George Aggidis, 2023. "A Review of the Levelized Cost of Wave Energy Based on a Techno-Economic Model," Energies, MDPI, vol. 16(5), pages 1-30, February.
    13. Eva Segura & Rafael Morales & José A. Somolinos, 2019. "Increasing the Competitiveness of Tidal Systems by Means of the Improvement of Installation and Maintenance Maneuvers in First Generation Tidal Energy Converters—An Economic Argumentation," Energies, MDPI, vol. 12(13), pages 1-27, June.
    14. George Lavidas & Francesco De Leo & Giovanni Besio, 2020. "Blue Growth Development in the Mediterranean Sea: Quantifying the Benefits of an Integrated Wave Energy Converter at Genoa Harbour," Energies, MDPI, vol. 13(16), pages 1-14, August.
    15. Mustapa, M.A. & Yaakob, O.B. & Ahmed, Yasser M. & Rheem, Chang-Kyu & Koh, K.K. & Adnan, Faizul Amri, 2017. "Wave energy device and breakwater integration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 43-58.
    16. Kasiulis, Egidijus & Punys, Petras & Kofoed, Jens Peter, 2015. "Assessment of theoretical near-shore wave power potential along the Lithuanian coast of the Baltic Sea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 134-142.
    17. Fang He & Mingjia Li & Zhenhua Huang, 2016. "An Experimental Study of Pile-Supported OWC-Type Breakwaters: Energy Extraction and Vortex-Induced Energy Loss," Energies, MDPI, vol. 9(7), pages 1-15, July.
    18. Adriano Silva Bastos & Tâmara Rita Costa de Souza & Dieimys Santos Ribeiro & Mirian de Lourdes Noronha Motta Melo & Carlos Barreira Martinez, 2023. "Wave Energy Generation in Brazil: A Georeferenced Oscillating Water Column Inventory," Energies, MDPI, vol. 16(8), pages 1-24, April.
    19. Américo S. Ribeiro & Maite deCastro & Liliana Rusu & Mariana Bernardino & João M. Dias & Moncho Gomez-Gesteira, 2020. "Evaluating the Future Efficiency of Wave Energy Converters along the NW Coast of the Iberian Peninsula," Energies, MDPI, vol. 13(14), pages 1-15, July.
    20. Ruijia Jin & Jiawei Wang & Hanbao Chen & Baolei Geng & Zhen Liu, 2022. "Numerical Investigation of Multi-Floater Truss-Type Wave Energy Convertor Platform," Energies, MDPI, vol. 15(15), pages 1-17, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:7:p:1218-:d:218131. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.