IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i6p1506-d335635.html
   My bibliography  Save this article

Fault Model and Travelling Wave Matching Based Single Terminal Fault Location Algorithm for T-Connection Transmission Line: A Yunnan Power Grid Study

Author

Listed:
  • Hongchun Shu

    (Faculty of Electric Power Engineering, Kunming University of Science and Technology, Kunming 650500, China)

  • Yiming Han

    (Faculty of Electric Power Engineering, Kunming University of Science and Technology, Kunming 650500, China)

  • Ran Huang

    (Electric Power Research Institute of Yunnan Power Grid Co., Ltd., Kunming 650217, China)

  • Yutao Tang

    (Faculty of Electric Power Engineering, Kunming University of Science and Technology, Kunming 650500, China)

  • Pulin Cao

    (Faculty of Electric Power Engineering, Kunming University of Science and Technology, Kunming 650500, China)

  • Bo Yang

    (Faculty of Electric Power Engineering, Kunming University of Science and Technology, Kunming 650500, China)

  • Yu Zhang

    (Faculty of Electric Power Engineering, Kunming University of Science and Technology, Kunming 650500, China)

Abstract

Due to the complex structure of the T-connection transmission lines, it is extremely difficult to identify the reflected travelling wave from the fault point and that from the connection point by the measurement from only one terminal. According to the characteristics of the structure of the T-connection transmission line, the reflection of the travelling wave within the line after the failure of different sections in T-connection transmission line are analyzed. Based on the lattice diagram of the travelling wave, the sequence of travelling waves detected at the measuring terminal varies with the fault distance and the faulty section. Moreover, the sequence of travelling waves detected in one terminal is unique at each faulty section. This article calculates the arrival time of travelling waves of fault points at different locations in different sections to form the collection of the travelling wave arrival time sequence. Then the sequence of travelling waves of the new added fault waveforms is extracted to compare with the sequences in the collection for the faulty section identification and fault location. This proposed method can accurately locate the fault with different fault types, fault resistances and system impedances by only single-terminal fault data. Both Power Systems Computer Aided Design/ Electromagnetic Transients including DC (PSCAD/EMTDC) and actual measurement data are implemented to verify the effectiveness of this method.

Suggested Citation

  • Hongchun Shu & Yiming Han & Ran Huang & Yutao Tang & Pulin Cao & Bo Yang & Yu Zhang, 2020. "Fault Model and Travelling Wave Matching Based Single Terminal Fault Location Algorithm for T-Connection Transmission Line: A Yunnan Power Grid Study," Energies, MDPI, vol. 13(6), pages 1-22, March.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:6:p:1506-:d:335635
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/6/1506/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/6/1506/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pulin Cao & Hongchun Shu & Bo Yang & Na An & Dalin Qiu & Weiye Teng & Jun Dong, 2018. "Voltage Distribution–Based Fault Location for Half-Wavelength Transmission Line with Large-Scale Wind Power Integration in China," Energies, MDPI, vol. 11(3), pages 1-22, March.
    2. Yu Han & Cheng Xu & Gang Xu & Yuwen Zhang & Yongping Yang, 2017. "An Improved Flexible Solar Thermal Energy Integration Process for Enhancing the Coal-Based Energy Efficiency and NO x Removal Effectiveness in Coal-Fired Power Plants under Different Load Conditions," Energies, MDPI, vol. 10(10), pages 1-18, September.
    3. Zeel Maheshwari & Rama Ramakumar, 2017. "Smart Integrated Renewable Energy Systems (SIRES): A Novel Approach for Sustainable Development," Energies, MDPI, vol. 10(8), pages 1-22, August.
    4. Yang, Bo & Yu, Tao & Shu, Hongchun & Zhang, Yuming & Chen, Jian & Sang, Yiyan & Jiang, Lin, 2018. "Passivity-based sliding-mode control design for optimal power extraction of a PMSG based variable speed wind turbine," Renewable Energy, Elsevier, vol. 119(C), pages 577-589.
    5. Yang, Bo & Yu, Tao & Shu, Hongchun & Dong, Jun & Jiang, Lin, 2018. "Robust sliding-mode control of wind energy conversion systems for optimal power extraction via nonlinear perturbation observers," Applied Energy, Elsevier, vol. 210(C), pages 711-723.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pulin Cao & Hongchun Shu & Bo Yang & Na An & Dalin Qiu & Weiye Teng & Jun Dong, 2018. "Voltage Distribution–Based Fault Location for Half-Wavelength Transmission Line with Large-Scale Wind Power Integration in China," Energies, MDPI, vol. 11(3), pages 1-22, March.
    2. Hongchun Shu & Na An & Bo Yang & Yue Dai & Yu Guo, 2020. "Single Pole-to-Ground Fault Analysis of MMC-HVDC Transmission Lines Based on Capacitive Fuzzy Identification Algorithm," Energies, MDPI, vol. 13(2), pages 1-18, January.
    3. Soudan, Bassel, 2019. "Community-scale baseload generation from marine energy," Energy, Elsevier, vol. 189(C).
    4. Huazhen Cao & Chong Gao & Xuan He & Yang Li & Tao Yu, 2020. "Multi-Agent Cooperation Based Reduced-Dimension Q(λ) Learning for Optimal Carbon-Energy Combined-Flow," Energies, MDPI, vol. 13(18), pages 1-22, September.
    5. Pan, Zhenning & Yu, Tao & Li, Jie & Qu, Kaiping & Yang, Bo, 2020. "Risk-averse real-time dispatch of integrated electricity and heat system using a modified approximate dynamic programming approach," Energy, Elsevier, vol. 198(C).
    6. Yang, Bo & Wang, Jingbo & Sang, Yiyan & Yu, Lei & Shu, Hongchun & Li, Shengnan & He, Tingyi & Yang, Lei & Zhang, Xiaoshun & Yu, Tao, 2019. "Applications of supercapacitor energy storage systems in microgrid with distributed generators via passive fractional-order sliding-mode control," Energy, Elsevier, vol. 187(C).
    7. Karabacak, Murat, 2019. "A new perturb and observe based higher order sliding mode MPPT control of wind turbines eliminating the rotor inertial effect," Renewable Energy, Elsevier, vol. 133(C), pages 807-827.
    8. Yang, Bo & Guo, Zhengxun & Yang, Yi & Chen, Yijun & Zhang, Rui & Su, Keyi & Shu, Hongchun & Yu, Tao & Zhang, Xiaoshun, 2021. "Extreme learning machine based meta-heuristic algorithms for parameter extraction of solid oxide fuel cells," Applied Energy, Elsevier, vol. 303(C).
    9. Yang, Bo & Wang, Junting & Zhang, Xiaoshun & Yu, Lei & Shu, Hongchun & Yu, Tao & Sun, Liming, 2020. "Control of SMES systems in distribution networks with renewable energy integration: A perturbation estimation approach," Energy, Elsevier, vol. 202(C).
    10. Yang, Bo & Zhu, Tianjiao & Zhang, Xiaoshun & Wang, Jingbo & Shu, Hongchun & Li, Shengnan & He, Tingyi & Yang, Lei & Yu, Tao, 2020. "Design and implementation of Battery/SMES hybrid energy storage systems used in electric vehicles: A nonlinear robust fractional-order control approach," Energy, Elsevier, vol. 191(C).
    11. Zhang, Xiaoshun & Tan, Tian & Yang, Bo & Wang, Jingbo & Li, Shengnan & He, Tingyi & Yang, Lei & Yu, Tao & Sun, Liming, 2020. "Greedy search based data-driven algorithm of centralized thermoelectric generation system under non-uniform temperature distribution," Applied Energy, Elsevier, vol. 260(C).
    12. Btissam Majout & Houda El Alami & Hassna Salime & Nada Zine Laabidine & Youness El Mourabit & Saad Motahhir & Manale Bouderbala & Mohammed Karim & Badre Bossoufi, 2022. "A Review on Popular Control Applications in Wind Energy Conversion System Based on Permanent Magnet Generator PMSG," Energies, MDPI, vol. 15(17), pages 1-41, August.
    13. Yan, Cai & Yao, Wei & Wen, Jianfeng & Fang, Jiakun & Ai, Xiaomeng & Wen, Jinyu, 2020. "Optimal design of probabilistic robust damping controllers to suppress multiband oscillations of power systems integrated with wind farm," Renewable Energy, Elsevier, vol. 158(C), pages 75-90.
    14. Yang, Bo & Wu, Shaocong & Zhang, Hao & Liu, Bingqiang & Shu, Hongchun & Shan, Jieshan & Ren, Yaxing & Yao, Wei, 2022. "Wave energy converter array layout optimization: A critical and comprehensive overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    15. Junfang Hao & Jinhai Huang & Ailing Zhang & Hongjie Ai & Qun Zhang & Bo Yang, 2020. "Optimal coordinated control of hybrid AC/VSC-HVDC system integrated with DFIG via cooperative beetle antennae search algorithm," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-22, November.
    16. Barambones, Oscar & Cortajarena, Jose A. & Calvo, Isidro & Gonzalez de Durana, Jose M. & Alkorta, Patxi & Karami-Mollaee, A., 2019. "Variable speed wind turbine control scheme using a robust wind torque estimation," Renewable Energy, Elsevier, vol. 133(C), pages 354-366.
    17. Zhang, Xiaoshun & Li, Shengnan & He, Tingyi & Yang, Bo & Yu, Tao & Li, Haofei & Jiang, Lin & Sun, Liming, 2019. "Memetic reinforcement learning based maximum power point tracking design for PV systems under partial shading condition," Energy, Elsevier, vol. 174(C), pages 1079-1090.
    18. Chen, Jian & Yao, Wei & Zhang, Chuan-Ke & Ren, Yaxing & Jiang, Lin, 2019. "Design of robust MPPT controller for grid-connected PMSG-Based wind turbine via perturbation observation based nonlinear adaptive control," Renewable Energy, Elsevier, vol. 134(C), pages 478-495.
    19. Juanwei, Chen & Tao, Yu & Yue, Xu & Xiaohua, Cheng & Bo, Yang & Baomin, Zhen, 2019. "Fast analytical method for reliability evaluation of electricity-gas integrated energy system considering dispatch strategies," Applied Energy, Elsevier, vol. 242(C), pages 260-272.
    20. Mousavi, Yashar & Bevan, Geraint & Kucukdemiral, Ibrahim Beklan & Fekih, Afef, 2022. "Sliding mode control of wind energy conversion systems: Trends and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:6:p:1506-:d:335635. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.