IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i13p4000-d587800.html
   My bibliography  Save this article

Heat Transfer Efficiency Prediction of Coal-Fired Power Plant Boiler Based on CEEMDAN-NAR Considering Ash Fouling

Author

Listed:
  • Yuanhao Shi

    (School of Electrical and Control Engineering, North University of China, Taiyuan 030051, China)

  • Mengwei Li

    (School of Electrical and Control Engineering, North University of China, Taiyuan 030051, China)

  • Jie Wen

    (School of Electrical and Control Engineering, North University of China, Taiyuan 030051, China)

  • Yanru Yang

    (School of Electrical and Control Engineering, North University of China, Taiyuan 030051, China)

  • Fangshu Cui

    (School of Data Science and Technology, North University of China, Taiyuan 030051, China)

  • Jianchao Zeng

    (School of Data Science and Technology, North University of China, Taiyuan 030051, China)

Abstract

Ash fouling has been an important factor in reducing the heat transfer efficiency and safety of the coal-fired power plant boilers. Scientific and accurate prediction of ash fouling of heat transfer surfaces is the basis of formulating a reasonable soot blowing strategy to improve energy efficiency. This study presented a comprehensive approach of dynamic prediction of the ash fouling of heat transfer surfaces in coal-fired power plant boilers. At first, the cleanliness factor is used to reflect the fouling level of the heat transfer surfaces. Then, a dynamic model is proposed to predict ash deposits in the coal-fired boilers by combining complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and nonlinear autoregressive neural networks (NARNN). To construct a reasonable network model, the minimum information criterion and trial-and-error method are used to determine the delay orders and hidden layers. Finally, the experimental object is established on the 300 MV economizer clearness factor dataset of the power station, and the root mean square error and mean absolute percentage error of the proposed method are the smallest. In addition, the experimental results show that this multiscale prediction model is more competitive than the Elman model.

Suggested Citation

  • Yuanhao Shi & Mengwei Li & Jie Wen & Yanru Yang & Fangshu Cui & Jianchao Zeng, 2021. "Heat Transfer Efficiency Prediction of Coal-Fired Power Plant Boiler Based on CEEMDAN-NAR Considering Ash Fouling," Energies, MDPI, vol. 14(13), pages 1-19, July.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:4000-:d:587800
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/13/4000/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/13/4000/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yuanhao Shi & Qiang Li & Jie Wen & Fangshu Cui & Xiaoqiong Pang & Jianfang Jia & Jianchao Zeng & Jingcheng Wang, 2019. "Soot Blowing Optimization for Frequency in Economizers to Improve Boiler Performance in Coal-Fired Power Plant," Energies, MDPI, vol. 12(15), pages 1-19, July.
    2. Yuanhao Shi & Jie Wen & Fangshu Cui & Jingcheng Wang, 2019. "An Optimization Study on Soot-Blowing of Air Preheaters in Coal-Fired Power Plant Boilers," Energies, MDPI, vol. 12(5), pages 1-15, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fangshu Cui & Sheng Qin & Jing Zhang & Mengwei Li & Yuanhao Shi, 2022. "A Hybrid Method for Prediction of Ash Fouling on Heat Transfer Surfaces," Energies, MDPI, vol. 15(13), pages 1-15, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuiguang Tong & Xiang Zhang & Zheming Tong & Yanling Wu & Ning Tang & Wei Zhong, 2019. "Online Ash Fouling Prediction for Boiler Heating Surfaces based on Wavelet Analysis and Support Vector Regression," Energies, MDPI, vol. 13(1), pages 1-20, December.
    2. Fangshu Cui & Sheng Qin & Jing Zhang & Mengwei Li & Yuanhao Shi, 2022. "A Hybrid Method for Prediction of Ash Fouling on Heat Transfer Surfaces," Energies, MDPI, vol. 15(13), pages 1-15, June.
    3. Hang Yin & Yingai Jin & Liang Li & Wenbo Lv, 2022. "Numerical Investigation on the Impact of Exergy Analysis and Structural Improvement in Power Plant Boiler through Co-Simulation," Energies, MDPI, vol. 15(21), pages 1-19, October.
    4. Yuanhao Shi & Qiang Li & Jie Wen & Fangshu Cui & Xiaoqiong Pang & Jianfang Jia & Jianchao Zeng & Jingcheng Wang, 2019. "Soot Blowing Optimization for Frequency in Economizers to Improve Boiler Performance in Coal-Fired Power Plant," Energies, MDPI, vol. 12(15), pages 1-19, July.
    5. Aleksandra V. Varganova & Vadim R. Khramshin & Andrey A. Radionov, 2023. "Operating Modes Optimization for the Boiler Units of Industrial Steam Plants," Energies, MDPI, vol. 16(6), pages 1-14, March.
    6. Wang, Yanhong & Cao, Lihua & Li, Xingcan & Wang, Jiaxing & Hu, Pengfei & Li, Bo & Li, Yong, 2020. "A novel thermodynamic method and insight of heat transfer characteristics on economizer for supercritical thermal power plant," Energy, Elsevier, vol. 191(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:4000-:d:587800. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.