IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v127y2020ics1364032120301349.html
   My bibliography  Save this article

An internet of energy framework with distributed energy resources, prosumers and small-scale virtual power plants: An overview

Author

Listed:
  • Mahmud, Khizir
  • Khan, Behram
  • Ravishankar, Jayashri
  • Ahmadi, Abdollah
  • Siano, Pierluigi

Abstract

Current power networks and consumers are undergoing a fundamental shift in the way traditional energy systems were designed and managed. The bidirectional peer-to-peer (P–P) energy transactions pushed passive consumers to be prosumers. The future smart grid or the internet of energy (IoE) will facilitate the coordination of all types of prosumers to form virtual power plants (VPP). The paper aims to contribute to this growing area of research by accumulating and summarizing the significant ideas of the integration of distributed prosumers and small-scale VPP to the internet of energy (IoE). The study also reports the characteristics of IoE in comparison to the traditional grid and offers some valuable insights into the control, management and optimization strategies of prosumers, distributed energy resources (DERs) and VPP. As bidirectional P–P energy transaction by the prosumers is a crucial element of IoE, their management strategies including various demand-response approach at the customers’-levels are systematically summarized. The integration of DERs and prosumers to the VPP considering their functions, infrastructure, type, control objectives are also reviewed and summarized. Various optimization techniques and algorithm, and their objectives functions and the types of mathematical formulation that are used to manage the DERs and VPP are discussed and categorized systematically. Finally, the factors which affect the integration of DERs and prosumers to the VPP are identified.

Suggested Citation

  • Mahmud, Khizir & Khan, Behram & Ravishankar, Jayashri & Ahmadi, Abdollah & Siano, Pierluigi, 2020. "An internet of energy framework with distributed energy resources, prosumers and small-scale virtual power plants: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
  • Handle: RePEc:eee:rensus:v:127:y:2020:i:c:s1364032120301349
    DOI: 10.1016/j.rser.2020.109840
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032120301349
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2020.109840?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Niknam, Taher & Azizipanah-Abarghooee, Rasoul & Narimani, Mohammad Rasoul, 2012. "An efficient scenario-based stochastic programming framework for multi-objective optimal micro-grid operation," Applied Energy, Elsevier, vol. 99(C), pages 455-470.
    2. Tan, Kang Miao & Ramachandaramurthy, Vigna K. & Yong, Jia Ying, 2016. "Integration of electric vehicles in smart grid: A review on vehicle to grid technologies and optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 720-732.
    3. Shabanzadeh, Morteza & Sheikh-El-Eslami, Mohammad-Kazem & Haghifam, Mahmoud-Reza, 2016. "A medium-term coalition-forming model of heterogeneous DERs for a commercial virtual power plant," Applied Energy, Elsevier, vol. 169(C), pages 663-681.
    4. Mahmud, Khizir & Amin, Uzma & Hossain, M.J. & Ravishankar, Jayashri, 2018. "Computational tools for design, analysis, and management of residential energy systems," Applied Energy, Elsevier, vol. 221(C), pages 535-556.
    5. Tajeddini, Mohammad Amin & Rahimi-Kian, Ashkan & Soroudi, Alireza, 2014. "Risk averse optimal operation of a virtual power plant using two stage stochastic programming," Energy, Elsevier, vol. 73(C), pages 958-967.
    6. Eltigani, Dalia & Masri, Syafrudin, 2015. "Challenges of integrating renewable energy sources to smart grids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 770-780.
    7. Ho, Wai Shin & Macchietto, Sandro & Lim, Jeng Shiun & Hashim, Haslenda & Muis, Zarina Ab. & Liu, Wen Hui, 2016. "Optimal scheduling of energy storage for renewable energy distributed energy generation system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1100-1107.
    8. A. Rahman, Hasimah & Majid, Md. Shah & Rezaee Jordehi, A. & Chin Kim, Gan & Hassan, Mohammad Yusri & O. Fadhl, Saeed, 2015. "Operation and control strategies of integrated distributed energy resources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1412-1420.
    9. Mahmud, Khizir & Town, Graham E., 2016. "A review of computer tools for modeling electric vehicle energy requirements and their impact on power distribution networks," Applied Energy, Elsevier, vol. 172(C), pages 337-359.
    10. Usman, Ahmad & Shami, Sajjad Haider, 2013. "Evolution of Communication Technologies for Smart Grid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 191-199.
    11. Hu, Junjie & Morais, Hugo & Sousa, Tiago & Lind, Morten, 2016. "Electric vehicle fleet management in smart grids: A review of services, optimization and control aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1207-1226.
    12. Naus, Joeri & Spaargaren, Gert & van Vliet, Bas J.M. & van der Horst, Hilje M., 2014. "Smart grids, information flows and emerging domestic energy practices," Energy Policy, Elsevier, vol. 68(C), pages 436-446.
    13. Cheng, Meng & Sami, Saif Sabah & Wu, Jianzhong, 2017. "Benefits of using virtual energy storage system for power system frequency response," Applied Energy, Elsevier, vol. 194(C), pages 376-385.
    14. Shaukat, N. & Ali, S.M. & Mehmood, C.A. & Khan, B. & Jawad, M. & Farid, U. & Ullah, Z. & Anwar, S.M. & Majid, M., 2018. "A survey on consumers empowerment, communication technologies, and renewable generation penetration within Smart Grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1453-1475.
    15. Mwasilu, Francis & Justo, Jackson John & Kim, Eun-Kyung & Do, Ton Duc & Jung, Jin-Woo, 2014. "Electric vehicles and smart grid interaction: A review on vehicle to grid and renewable energy sources integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 501-516.
    16. Tascikaraoglu, A. & Erdinc, O. & Uzunoglu, M. & Karakas, A., 2014. "An adaptive load dispatching and forecasting strategy for a virtual power plant including renewable energy conversion units," Applied Energy, Elsevier, vol. 119(C), pages 445-453.
    17. Azadfar, Elham & Sreeram, Victor & Harries, David, 2015. "The investigation of the major factors influencing plug-in electric vehicle driving patterns and charging behaviour," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1065-1076.
    18. Shabanzadeh, Morteza & Sheikh-El-Eslami, Mohammad-Kazem & Haghifam, Mahmoud-Reza, 2017. "An interactive cooperation model for neighboring virtual power plants," Applied Energy, Elsevier, vol. 200(C), pages 273-289.
    19. Pandžić, Hrvoje & Kuzle, Igor & Capuder, Tomislav, 2013. "Virtual power plant mid-term dispatch optimization," Applied Energy, Elsevier, vol. 101(C), pages 134-141.
    20. Thomas Morstyn & Niall Farrell & Sarah J. Darby & Malcolm D. McCulloch, 2018. "Using peer-to-peer energy-trading platforms to incentivize prosumers to form federated power plants," Nature Energy, Nature, vol. 3(2), pages 94-101, February.
    21. Kabalci, Yasin, 2016. "A survey on smart metering and smart grid communication," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 302-318.
    22. Zamani, Ali Ghahgharaee & Zakariazadeh, Alireza & Jadid, Shahram, 2016. "Day-ahead resource scheduling of a renewable energy based virtual power plant," Applied Energy, Elsevier, vol. 169(C), pages 324-340.
    23. Sharma, Konark & Saini, Lalit Mohan, 2017. "Power-line communications for smart grid: Progress, challenges, opportunities and status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 704-751.
    24. Rahmani-Dabbagh, Saeed & Sheikh-El-Eslami, Mohammad Kazem, 2016. "A profit sharing scheme for distributed energy resources integrated into a virtual power plant," Applied Energy, Elsevier, vol. 184(C), pages 313-328.
    25. Wei, Congying & Xu, Jian & Liao, Siyang & Sun, Yuanzhang & Jiang, Yibo & Ke, Deping & Zhang, Zhen & Wang, Jing, 2018. "A bi-level scheduling model for virtual power plants with aggregated thermostatically controlled loads and renewable energy," Applied Energy, Elsevier, vol. 224(C), pages 659-670.
    26. Mahmud, Khizir & Town, Graham E. & Morsalin, Sayidul & Hossain, M.J., 2018. "Integration of electric vehicles and management in the internet of energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4179-4203.
    27. Aghaei, Jamshid & Alizadeh, Mohammad-Iman, 2013. "Demand response in smart electricity grids equipped with renewable energy sources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 64-72.
    28. Pandžić, Hrvoje & Morales, Juan M. & Conejo, Antonio J. & Kuzle, Igor, 2013. "Offering model for a virtual power plant based on stochastic programming," Applied Energy, Elsevier, vol. 105(C), pages 282-292.
    29. Tuballa, Maria Lorena & Abundo, Michael Lochinvar, 2016. "A review of the development of Smart Grid technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 710-725.
    30. Hadayeghparast, Shahrzad & SoltaniNejad Farsangi, Alireza & Shayanfar, Heidarali, 2019. "Day-ahead stochastic multi-objective economic/emission operational scheduling of a large scale virtual power plant," Energy, Elsevier, vol. 172(C), pages 630-646.
    31. Kasaei, Mohammad Javad & Gandomkar, Majid & Nikoukar, Javad, 2017. "Optimal management of renewable energy sources by virtual power plant," Renewable Energy, Elsevier, vol. 114(PB), pages 1180-1188.
    32. Nosratabadi, Seyyed Mostafa & Hooshmand, Rahmat-Allah & Gholipour, Eskandar, 2017. "A comprehensive review on microgrid and virtual power plant concepts employed for distributed energy resources scheduling in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 341-363.
    33. Moghaddam, Iman Gerami & Nick, Mostafa & Fallahi, Farhad & Sanei, Mohsen & Mortazavi, Saeid, 2013. "Risk-averse profit-based optimal operation strategy of a combined wind farm–cascade hydro system in an electricity market," Renewable Energy, Elsevier, vol. 55(C), pages 252-259.
    34. Kong, Xiangyu & Xiao, Jie & Wang, Chengshan & Cui, Kai & Jin, Qiang & Kong, Deqian, 2019. "Bi-level multi-time scale scheduling method based on bidding for multi-operator virtual power plant," Applied Energy, Elsevier, vol. 249(C), pages 178-189.
    35. Moghaddam, Amjad Anvari & Seifi, Alireza & Niknam, Taher, 2012. "Multi-operation management of a typical micro-grids using Particle Swarm Optimization: A comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1268-1281.
    36. Tay, Francis E. H. & Cao, Lijuan, 2001. "Application of support vector machines in financial time series forecasting," Omega, Elsevier, vol. 29(4), pages 309-317, August.
    37. Yu, Songyuan & Fang, Fang & Liu, Yajuan & Liu, Jizhen, 2019. "Uncertainties of virtual power plant: Problems and countermeasures," Applied Energy, Elsevier, vol. 239(C), pages 454-470.
    38. Arslan, Okan & Karasan, Oya Ekin, 2013. "Cost and emission impacts of virtual power plant formation in plug-in hybrid electric vehicle penetrated networks," Energy, Elsevier, vol. 60(C), pages 116-124.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Naval, Natalia & Yusta, Jose M., 2021. "Virtual power plant models and electricity markets - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    2. Wafa Nafkha-Tayari & Seifeddine Ben Elghali & Ehsan Heydarian-Forushani & Mohamed Benbouzid, 2022. "Virtual Power Plants Optimization Issue: A Comprehensive Review on Methods, Solutions, and Prospects," Energies, MDPI, vol. 15(10), pages 1-20, May.
    3. Yu, Songyuan & Fang, Fang & Liu, Yajuan & Liu, Jizhen, 2019. "Uncertainties of virtual power plant: Problems and countermeasures," Applied Energy, Elsevier, vol. 239(C), pages 454-470.
    4. Mohammad Mohammadi Roozbehani & Ehsan Heydarian-Forushani & Saeed Hasanzadeh & Seifeddine Ben Elghali, 2022. "Virtual Power Plant Operational Strategies: Models, Markets, Optimization, Challenges, and Opportunities," Sustainability, MDPI, vol. 14(19), pages 1-23, September.
    5. Nosratabadi, Seyyed Mostafa & Hooshmand, Rahmat-Allah & Gholipour, Eskandar, 2017. "A comprehensive review on microgrid and virtual power plant concepts employed for distributed energy resources scheduling in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 341-363.
    6. Mahmud, Khizir & Town, Graham E. & Morsalin, Sayidul & Hossain, M.J., 2018. "Integration of electric vehicles and management in the internet of energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4179-4203.
    7. Amit Kumer Podder & Sayemul Islam & Nallapaneni Manoj Kumar & Aneesh A. Chand & Pulivarthi Nageswara Rao & Kushal A. Prasad & T. Logeswaran & Kabir A. Mamun, 2020. "Systematic Categorization of Optimization Strategies for Virtual Power Plants," Energies, MDPI, vol. 13(23), pages 1-46, November.
    8. Bhuiyan, Erphan A. & Hossain, Md. Zahid & Muyeen, S.M. & Fahim, Shahriar Rahman & Sarker, Subrata K. & Das, Sajal K., 2021. "Towards next generation virtual power plant: Technology review and frameworks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    9. Moreno, Blanca & Díaz, Guzmán, 2019. "The impact of virtual power plant technology composition on wholesale electricity prices: A comparative study of some European Union electricity markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 100-108.
    10. Hadayeghparast, Shahrzad & SoltaniNejad Farsangi, Alireza & Shayanfar, Heidarali, 2019. "Day-ahead stochastic multi-objective economic/emission operational scheduling of a large scale virtual power plant," Energy, Elsevier, vol. 172(C), pages 630-646.
    11. Naval, Natalia & Sánchez, Raul & Yusta, Jose M., 2020. "A virtual power plant optimal dispatch model with large and small-scale distributed renewable generation," Renewable Energy, Elsevier, vol. 151(C), pages 57-69.
    12. Li, Qiang & Wei, Fanchao & Zhou, Yongcheng & Li, Jiajia & Zhou, Guowen & Wang, Zhonghao & Liu, Jinfu & Yan, Peigang & Yu, Daren, 2023. "A scheduling framework for VPP considering multiple uncertainties and flexible resources," Energy, Elsevier, vol. 282(C).
    13. Natalia Naval & Jose M. Yusta, 2020. "Water-Energy Management for Demand Charges and Energy Cost Optimization of a Pumping Stations System under a Renewable Virtual Power Plant Model," Energies, MDPI, vol. 13(11), pages 1-21, June.
    14. Nosratabadi, Seyyed Mostafa & Hooshmand, Rahmat-Allah & Gholipour, Eskandar, 2016. "Stochastic profit-based scheduling of industrial virtual power plant using the best demand response strategy," Applied Energy, Elsevier, vol. 164(C), pages 590-606.
    15. Zhou, Kaile & Peng, Ning & Yin, Hui & Hu, Rong, 2023. "Urban virtual power plant operation optimization with incentive-based demand response," Energy, Elsevier, vol. 282(C).
    16. Dong, Lianxin & Fan, Shuai & Wang, Zhihua & Xiao, Jucheng & Zhou, Huan & Li, Zuyi & He, Guangyu, 2021. "An adaptive decentralized economic dispatch method for virtual power plant," Applied Energy, Elsevier, vol. 300(C).
    17. Wei, Congying & Xu, Jian & Liao, Siyang & Sun, Yuanzhang & Jiang, Yibo & Ke, Deping & Zhang, Zhen & Wang, Jing, 2018. "A bi-level scheduling model for virtual power plants with aggregated thermostatically controlled loads and renewable energy," Applied Energy, Elsevier, vol. 224(C), pages 659-670.
    18. Shaukat, N. & Khan, B. & Ali, S.M. & Mehmood, C.A. & Khan, J. & Farid, U. & Majid, M. & Anwar, S.M. & Jawad, M. & Ullah, Z., 2018. "A survey on electric vehicle transportation within smart grid system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1329-1349.
    19. Luo, Zhe & Hong, SeungHo & Ding, YueMin, 2019. "A data mining-driven incentive-based demand response scheme for a virtual power plant," Applied Energy, Elsevier, vol. 239(C), pages 549-559.
    20. Zamani, Ali Ghahgharaee & Zakariazadeh, Alireza & Jadid, Shahram, 2016. "Day-ahead resource scheduling of a renewable energy based virtual power plant," Applied Energy, Elsevier, vol. 169(C), pages 324-340.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:127:y:2020:i:c:s1364032120301349. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.