IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v91y2015icp894-902.html
   My bibliography  Save this article

An energy storage algorithm for ramp rate control of utility scale PV (photovoltaics) plants

Author

Listed:
  • van Haaren, Rob
  • Morjaria, Mahesh
  • Fthenakis, Vasilis

Abstract

Balancing authorities are currently exploring options for preventing potential increases in ramping costs of conventional generators in the grid by setting ramping limits on variable energy resources. In this paper, we present the methodology and results of simulations on the smoothing performance of battery, flywheel and ultra-capacitor energy storage technologies connected to single large-scale PV (photovoltaics) plants subject to a 10%/minute ramping limit. The simulations were run using second-to-second output data of four large-scale PV plants of which two are in the Southeast of Canada (5 MW and 80 MW) and two in the Southwest of the US (21 and 30.24 MW). Energy storage units are sized for each plant on a baseline of 99% violation reductions and their performances are compared. We also present two dispatch strategies tailored to low and high cycle-life storage technologies which are modeled without forecasting measures and assuming perfect short-term forecast for the remainder of the averaging period.

Suggested Citation

  • van Haaren, Rob & Morjaria, Mahesh & Fthenakis, Vasilis, 2015. "An energy storage algorithm for ramp rate control of utility scale PV (photovoltaics) plants," Energy, Elsevier, vol. 91(C), pages 894-902.
  • Handle: RePEc:eee:energy:v:91:y:2015:i:c:p:894-902
    DOI: 10.1016/j.energy.2015.08.081
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215011573
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.08.081?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Greening, Benjamin & Azapagic, Adisa, 2013. "Environmental impacts of micro-wind turbines and their potential to contribute to UK climate change targets," Energy, Elsevier, vol. 59(C), pages 454-466.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huo, Yujia & Gruosso, Giambattista, 2020. "A novel ramp-rate control of grid-tied PV-Battery systems to reduce required battery capacity," Energy, Elsevier, vol. 210(C).
    2. Luana Pontes & Tatiane Costa & Amanda Souza & Nicolau Dantas & Andrea Vasconcelos & Guilherme Rissi & Roberto Dias & Mohamed A. Mohamed & Pierluigi Siano & Manoel Marinho, 2023. "Operational Data Analysis of a Battery Energy Storage System to Support Wind Energy Generation," Energies, MDPI, vol. 16(3), pages 1-20, February.
    3. Yang, Yuqing & Bremner, Stephen & Menictas, Chris & Kay, Merlinde, 2022. "Forecasting error processing techniques and frequency domain decomposition for forecasting error compensation and renewable energy firming in hybrid systems," Applied Energy, Elsevier, vol. 313(C).
    4. Ana Cabrera-Tobar & Eduard Bullich-Massagué & Mònica Aragüés-Peñalba & Oriol Gomis-Bellmunt, 2019. "Active and Reactive Power Control of a PV Generator for Grid Code Compliance," Energies, MDPI, vol. 12(20), pages 1-25, October.
    5. Valentin Silvera Diaz & Daniel Augusto Cantane & André Quites Ordovás Santos & Oswaldo Hideo Ando Junior, 2021. "Comparative Analysis of Degradation Assessment of Battery Energy Storage Systems in PV Smoothing Application," Energies, MDPI, vol. 14(12), pages 1-16, June.
    6. Abebe Tilahun Tadie & Zhizhong Guo & Ying Xu, 2022. "Hybrid Model-Based BESS Sizing and Control for Wind Energy Ramp Rate Control," Energies, MDPI, vol. 15(23), pages 1-17, December.
    7. Jiang, Zhimin & Cai, Jie & Moses, Paul S., 2020. "Smoothing control of solar photovoltaic generation using building thermal loads," Applied Energy, Elsevier, vol. 277(C).
    8. de Oliveira-Assis, Lais & Soares-Ramos, Emanuel P.P. & Sarrias-Mena, Raúl & García-Triviño, Pablo & González-Rivera, Enrique & Sánchez-Sainz, Higinio & Llorens-Iborra, Francisco & Fernández-Ramírez, L, 2022. "Simplified model of battery energy-stored quasi-Z-source inverter-based photovoltaic power plant with Twofold energy management system," Energy, Elsevier, vol. 244(PA).
    9. Ying Wang & Bo Feng & Qing-Song Hua & Li Sun, 2021. "Short-Term Solar Power Forecasting: A Combined Long Short-Term Memory and Gaussian Process Regression Method," Sustainability, MDPI, vol. 13(7), pages 1-16, March.
    10. Cirés, E. & Marcos, J. & de la Parra, I. & García, M. & Marroyo, L., 2019. "The potential of forecasting in reducing the LCOE in PV plants under ramp-rate restrictions," Energy, Elsevier, vol. 188(C).
    11. Raugei, Marco & Sgouridis, Sgouris & Murphy, David & Fthenakis, Vasilis & Frischknecht, Rolf & Breyer, Christian & Bardi, Ugo & Barnhart, Charles & Buckley, Alastair & Carbajales-Dale, Michael & Csala, 2017. "Energy Return on Energy Invested (ERoEI) for photovoltaic solar systems in regions of moderate insolation: A comprehensive response," Energy Policy, Elsevier, vol. 102(C), pages 377-384.
    12. Shivashankar, S. & Mekhilef, Saad & Mokhlis, Hazlie & Karimi, M., 2016. "Mitigating methods of power fluctuation of photovoltaic (PV) sources – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1170-1184.
    13. Babak Arbab-Zavar & Emilio J. Palacios-Garcia & Juan C. Vasquez & Josep M. Guerrero, 2019. "Smart Inverters for Microgrid Applications: A Review," Energies, MDPI, vol. 12(5), pages 1-22, March.
    14. Chen, Xiaoyang & Du, Yang & Lim, Enggee & Fang, Lurui & Yan, Ke, 2022. "Towards the applicability of solar nowcasting: A practice on predictive PV power ramp-rate control," Renewable Energy, Elsevier, vol. 195(C), pages 147-166.
    15. Ballestrín, Jesús & Polo, Jesús & Martín-Chivelet, Nuria & Barbero, Javier & Carra, Elena & Alonso-Montesinos, Joaquín & Marzo, Aitor, 2022. "Soiling forecasting of solar plants: A combined heuristic approach and autoregressive model," Energy, Elsevier, vol. 239(PE).
    16. Hemmati, Reza & Saboori, Hedayat & Saboori, Saeid, 2016. "Stochastic risk-averse coordinated scheduling of grid integrated energy storage units in transmission constrained wind-thermal systems within a conditional value-at-risk framework," Energy, Elsevier, vol. 113(C), pages 762-775.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kamjoo, Azadeh & Maheri, Alireza & Putrus, Ghanim A., 2014. "Chance constrained programming using non-Gaussian joint distribution function in design of standalone hybrid renewable energy systems," Energy, Elsevier, vol. 66(C), pages 677-688.
    2. Shaikh, Mohammad A. & Kucukvar, Murat & Onat, Nuri Cihat & Kirkil, Gokhan, 2017. "A framework for water and carbon footprint analysis of national electricity production scenarios," Energy, Elsevier, vol. 139(C), pages 406-421.
    3. Lombardi, Lidia & Mendecka, Barbara & Carnevale, Ennio & Stanek, Wojciech, 2018. "Environmental impacts of electricity production of micro wind turbines with vertical axis," Renewable Energy, Elsevier, vol. 128(PB), pages 553-564.
    4. Aberilla, Jhud Mikhail & Gallego-Schmid, Alejandro & Stamford, Laurence & Azapagic, Adisa, 2020. "Design and environmental sustainability assessment of small-scale off-grid energy systems for remote rural communities," Applied Energy, Elsevier, vol. 258(C).
    5. Wang, Richard & Lam, Chor-Man & Hsu, Shu-Chien & Chen, Jieh-Haur, 2019. "Life cycle assessment and energy payback time of a standalone hybrid renewable energy commercial microgrid: A case study of Town Island in Hong Kong," Applied Energy, Elsevier, vol. 250(C), pages 760-775.
    6. Cusenza, Maria Anna & Guarino, Francesco & Longo, Sonia & Mistretta, Marina & Cellura, Maurizio, 2020. "Environmental assessment of 2030 electricity generation scenarios in Sicily: An integrated approach," Renewable Energy, Elsevier, vol. 160(C), pages 1148-1159.
    7. Dowon Han & Young Gun Heo & Nak Joon Choi & Sang Hyun Nam & Kyoung Ho Choi & Kyung Chun Kim, 2018. "Design, Fabrication, and Performance Test of a 100-W Helical-Blade Vertical-Axis Wind Turbine at Low Tip-Speed Ratio," Energies, MDPI, vol. 11(6), pages 1-17, June.
    8. Ozoemena, Matthew & Hasan, Reaz & Cheung, Wai Ming, 2016. "Analysis of technology improvement opportunities for a 1.5 MW wind turbine using a hybrid stochastic approach in life cycle assessment," Renewable Energy, Elsevier, vol. 93(C), pages 369-382.
    9. Sunderland, Keith M. & Narayana, Mahinsasa & Putrus, Ghanim & Conlon, Michael F. & McDonald, Steve, 2016. "The cost of energy associated with micro wind generation: International case studies of rural and urban installations," Energy, Elsevier, vol. 109(C), pages 818-829.
    10. Mendecka, Barbara & Lombardi, Lidia, 2019. "Life cycle environmental impacts of wind energy technologies: A review of simplified models and harmonization of the results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 462-480.
    11. Atilgan, Burcin & Azapagic, Adisa, 2016. "Renewable electricity in Turkey: Life cycle environmental impacts," Renewable Energy, Elsevier, vol. 89(C), pages 649-657.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:91:y:2015:i:c:p:894-902. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.