IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i5p828-d210386.html
   My bibliography  Save this article

Analysis of Thermal Performance and Energy Saving Potential by PCM Radiant Floor Heating System based on Wet Construction Method and Hot Water

Author

Listed:
  • Sanghoon Baek

    (Industry Academic Cooperation Foundation, Hankyong National University, 327, Jungang-ro, Anseong-si, Gyeonggi-do 17579, Korea)

  • Sangchul Kim

    (School of Architecture, Hankyong National University, 327, Jungang-ro, Anseong-si, Gyeonggi-do 17579, Korea)

Abstract

A phase change material (PCM) is an energy storage mass with high heat storage performance. In buildings, PCMs can be utilized to save energy in radiant floor heating systems. This study aims to analyze the thermal performance and energy saving potential by the PCM radiant floor heating system based on wet construction method and hot water. For such analysis, EnergyPlus program was used. As for the results, it was found that the proposed system almost maintained the set point of indoor air and a floor surface. Moreover, when a 10 mm PCM was applied, it was possible to save 2.4% of heating energy annually compared to existing buildings. In particular, when a 20–50 mm PCM was applied, it was found that 7.3–15.3% of heating energy was reduced annually. If indoor air temperature exceeds the comfort range of the proposed system, this problem can be solved by adjusting the set point of the floor surface or by increasing the temperature of hot water.

Suggested Citation

  • Sanghoon Baek & Sangchul Kim, 2019. "Analysis of Thermal Performance and Energy Saving Potential by PCM Radiant Floor Heating System based on Wet Construction Method and Hot Water," Energies, MDPI, vol. 12(5), pages 1-17, March.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:5:p:828-:d:210386
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/5/828/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/5/828/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Barzin, Reza & Chen, John J.J. & Young, Brent R. & Farid, Mohammed M., 2015. "Application of PCM underfloor heating in combination with PCM wallboards for space heating using price based control system," Applied Energy, Elsevier, vol. 148(C), pages 39-48.
    2. Sanghoon Baek & Sangchul Kim, 2018. "Determination of Optimum Hot-Water Temperatures for PCM Radiant Floor-Heating Systems Based on the Wet Construction Method," Sustainability, MDPI, vol. 10(11), pages 1-19, November.
    3. Cheng, Wenlong & Xie, Biao & Zhang, Rongming & Xu, Zhiming & Xia, Yuting, 2015. "Effect of thermal conductivities of shape stabilized PCM on under-floor heating system," Applied Energy, Elsevier, vol. 144(C), pages 10-18.
    4. Zhou, Guobing & He, Jing, 2015. "Thermal performance of a radiant floor heating system with different heat storage materials and heating pipes," Applied Energy, Elsevier, vol. 138(C), pages 648-660.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Larwa, Barbara & Cesari, Silvia & Bottarelli, Michele, 2021. "Study on thermal performance of a PCM enhanced hydronic radiant floor heating system," Energy, Elsevier, vol. 225(C).
    2. Miguel Ángel Álvarez-Feijoo & Pedro Orgeira-Crespo & Elena Arce & Andrés Suárez-García & José Roberto Ribas, 2020. "Effect of Insulation on the Energy Demand of a Standardized Container Facility at Airports in Spain under Different Weather Conditions," Energies, MDPI, vol. 13(20), pages 1-15, October.
    3. Filip Vrbanc & Mario Vašak & Vinko Lešić, 2023. "Simple and Accurate Model of Thermal Storage with Phase Change Material Tailored for Model Predictive Control," Energies, MDPI, vol. 16(19), pages 1-18, September.
    4. Antonio Real-Fernández & Joaquín Navarro-Esbrí & Adrián Mota-Babiloni & Ángel Barragán-Cervera & Luis Domenech & Fernando Sánchez & Angelo Maiorino & Ciro Aprea, 2019. "Modeling of a PCM TES Tank Used as an Alternative Heat Sink for a Water Chiller. Analysis of Performance and Energy Savings," Energies, MDPI, vol. 12(19), pages 1-18, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Shilei & Gao, Jingxian & Tong, Haojie & Yin, Shuai & Tang, Xiaolei & Jiang, Xiangyang, 2020. "Model establishment and operation optimization of the casing PCM radiant floor heating system," Energy, Elsevier, vol. 193(C).
    2. Sanghoon Baek & Sangchul Kim, 2018. "Determination of Optimum Hot-Water Temperatures for PCM Radiant Floor-Heating Systems Based on the Wet Construction Method," Sustainability, MDPI, vol. 10(11), pages 1-19, November.
    3. Khaireldin Faraj & Mahmoud Khaled & Jalal Faraj & Farouk Hachem & Cathy Castelain, 2022. "A Summary Review on Experimental Studies for PCM Building Applications: Towards Advanced Modular Prototype," Energies, MDPI, vol. 15(4), pages 1-43, February.
    4. Wenqiang Sun & Zuquan Zhao & Yanhui Wang, 2017. "Thermal Analysis of a Thermal Energy Storage Unit to Enhance a Workshop Heating System Driven by Industrial Residual Water," Energies, MDPI, vol. 10(2), pages 1-19, February.
    5. Gholamibozanjani, Gohar & Farid, Mohammed, 2020. "A comparison between passive and active PCM systems applied to buildings," Renewable Energy, Elsevier, vol. 162(C), pages 112-123.
    6. Ikutegbe, Charles A. & Farid, Mohammed M., 2020. "Application of phase change material foam composites in the built environment: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    7. Yang, Shiyu & Oliver Gao, H. & You, Fengqi, 2022. "Model predictive control in phase-change-material-wallboard-enhanced building energy management considering electricity price dynamics," Applied Energy, Elsevier, vol. 326(C).
    8. Puupponen, Salla & Mikkola, Valtteri & Ala-Nissila, Tapio & Seppälä, Ari, 2016. "Novel microstructured polyol–polystyrene composites for seasonal heat storage," Applied Energy, Elsevier, vol. 172(C), pages 96-106.
    9. Shafie-khah, M. & Kheradmand, M. & Javadi, S. & Azenha, M. & de Aguiar, J.L.B. & Castro-Gomes, J. & Siano, P. & Catalão, J.P.S., 2016. "Optimal behavior of responsive residential demand considering hybrid phase change materials," Applied Energy, Elsevier, vol. 163(C), pages 81-92.
    10. Li, Yantong & Huang, Gongsheng & Xu, Tao & Liu, Xiaoping & Wu, Huijun, 2018. "Optimal design of PCM thermal storage tank and its application for winter available open-air swimming pool," Applied Energy, Elsevier, vol. 209(C), pages 224-235.
    11. Monika Gandhi & Ashok Kumar & Rajasekar Elangovan & Chandan Swaroop Meena & Kishor S. Kulkarni & Anuj Kumar & Garima Bhanot & Nishant R. Kapoor, 2020. "A Review on Shape-Stabilized Phase Change Materials for Latent Energy Storage in Buildings," Sustainability, MDPI, vol. 12(22), pages 1-17, November.
    12. Aditya, L. & Mahlia, T.M.I. & Rismanchi, B. & Ng, H.M. & Hasan, M.H. & Metselaar, H.S.C. & Muraza, Oki & Aditiya, H.B., 2017. "A review on insulation materials for energy conservation in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1352-1365.
    13. Li, Xinyi & Ma, Ting & Liu, Jun & Zhang, Hao & Wang, Qiuwang, 2018. "Pore-scale investigation of gravity effects on phase change heat transfer characteristics using lattice Boltzmann method," Applied Energy, Elsevier, vol. 222(C), pages 92-103.
    14. Li Huang & Udo Piontek & Lulu Zhuang & Rongyue Zheng & Deqiu Zou, 2023. "Study on Thermal Performance of Electric Heating System with Salt Hydrate-PCM Storage," Energies, MDPI, vol. 16(20), pages 1-21, October.
    15. Zhao, M. & Gu, Z.L. & Kang, W.B. & Liu, X. & Zhang, L.Y. & Jin, L.W. & Zhang, Q.L., 2017. "Experimental investigation and feasibility analysis on a capillary radiant heating system based on solar and air source heat pump dual heat source," Applied Energy, Elsevier, vol. 185(P2), pages 2094-2105.
    16. Kazemi, M. & Hosseini, M.J. & Ranjbar, A.A. & Bahrampoury, R., 2018. "Improvement of longitudinal fins configuration in latent heat storage systems," Renewable Energy, Elsevier, vol. 116(PA), pages 447-457.
    17. Merlin, Kevin & Delaunay, Didier & Soto, Jérôme & Traonvouez, Luc, 2016. "Heat transfer enhancement in latent heat thermal storage systems: Comparative study of different solutions and thermal contact investigation between the exchanger and the PCM," Applied Energy, Elsevier, vol. 166(C), pages 107-116.
    18. Sun, Hongli & Duan, Mengfan & Wu, Yifan & Lin, Borong & Yang, Zixu & Zhao, Haitian, 2021. "Thermal performance investigation of a novel heating terminal integrated with flat heat pipe and heat transfer enhancement," Energy, Elsevier, vol. 236(C).
    19. Zeng, Cheng & Liu, Shuli & Shukla, Ashish, 2017. "Adaptability research on phase change materials based technologies in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 145-158.
    20. Gür, Muhammed & Öztop, Hakan F. & Selimefendigil, Fatih, 2023. "Analysis of solar underfloor heating system assisted with nano enhanced phase change material for nearly zero energy buildings approach," Renewable Energy, Elsevier, vol. 218(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:5:p:828-:d:210386. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.