IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i4p760-d208789.html
   My bibliography  Save this article

Development of an Exergy-Rational Method and Optimum Control Algorithm for the Best Utilization of the Flue Gas Heat in Coal-Fired Power Plant Stacks

Author

Listed:
  • Birol Kılkış

    (Turkish Society of HVAC&R Engineers, Ankara 06680, Turkey)

Abstract

Waste heat that is available in the flue gas of power plant stacks is a potential source of useful thermal power. In reclaiming and utilizing this waste heat without compromising plant efficiency, stacks usually need to be equipped with forced-draught fans in order to compensate for the decrease in natural draught while stack gas is cooled. In addition, pumps are used to circulate the heat transfer fluid. All of these parasitic operations require electrical power. Electrical power has unit exergy of almost 1 W/W. On the contrary, the thermal power exergy that is claimed from the low-enthalpy flue gas has much lower unit exergy. Therefore, from an exergetic point of view, the additional electrical exergy that is required to drive pumps and fans must not exceed the thermal exergy claimed. Based on the First-Law of Thermodynamics, the net energy that is saved may be positive with an apparently high coefficient of performance; however, the same generally does not hold true for the Second-Law. This is a matter of determining the optimum amount of heat to be claimed and the most rational method of utilizing this heat for maximum net exergy gain from the process, under variable outdoor conditions and the plant operations. The four main methods were compared. These are (a) electricity generation by thermoelectric generators, electricity generation with an Organic-Rankine Cycle with (b) or without (c) a heat pump, and (d) the direct use of the thermal exergy that is gained in a district energy system. The comparison of these methods shows that exergy-rationality is the best for method (b). A new analytical optimization algorithm and the exergy-based optimum control strategy were developed, which determine the optimum pump flow rate of the heat recovery system and then calculate how much forced-draft fan power is required in the stack at dynamic operating conditions. Robust design metrics were established to maximize the net exergy gain, including an exergy-based coefficient of performance. Parametric studies indicate that the exergetic approach provides a better insight by showing that the amount of heat that can be optimally recovered is much different than the values given by classical economic and energy efficiency considerations. A case study was performed for method (d), which shows that, without any exergy rationality-based control algorithm and design method, the flue gas heat recovery may not be feasible in district energy systems or any other methods of utilization of the heat recovered. The study has implications in the field, since most of the waste heat recovery units in industrial applications, which are designed based on the First-Law of Thermodynamics, result in exergy loss instead of exergy gain, and are therefore responsible for more carbon dioxide emissions. These applications must be retrofitted with new exergy-based controllers for variable speed pumps and fans with optimally selected capacities.

Suggested Citation

  • Birol Kılkış, 2019. "Development of an Exergy-Rational Method and Optimum Control Algorithm for the Best Utilization of the Flue Gas Heat in Coal-Fired Power Plant Stacks," Energies, MDPI, vol. 12(4), pages 1-19, February.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:4:p:760-:d:208789
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/4/760/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/4/760/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Saim Memon & Khawaja Noman Tahir, 2018. "Experimental and Analytical Simulation Analyses on the Electrical Performance of Thermoelectric Generator Modules for Direct and Concentrated Quartz-Halogen Heat Harvesting," Energies, MDPI, vol. 11(12), pages 1-17, November.
    2. Mustafa Erguvan & David W. MacPhee, 2018. "Energy and Exergy Analyses of Tube Banks in Waste Heat Recovery Applications," Energies, MDPI, vol. 11(8), pages 1-15, August.
    3. Steven Lecompte & Oyeniyi A. Oyewunmi & Christos N. Markides & Marija Lazova & Alihan Kaya & Martijn Van den Broek & Michel De Paepe, 2017. "Case Study of an Organic Rankine Cycle (ORC) for Waste Heat Recovery from an Electric Arc Furnace (EAF)," Energies, MDPI, vol. 10(5), pages 1-16, May.
    4. Kaushik, S.C. & Reddy, V. Siva & Tyagi, S.K., 2011. "Energy and exergy analyses of thermal power plants: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1857-1872, May.
    5. Oswaldo Hideo Ando Junior & Nelson H. Calderon & Samara Silva De Souza, 2018. "Characterization of a Thermoelectric Generator (TEG) System for Waste Heat Recovery," Energies, MDPI, vol. 11(6), pages 1-13, June.
    6. Cheng Xu & Yachi Gao & Qiang Zhang & Guoqiang Zhang & Gang Xu, 2018. "Thermodynamic, Economic and Environmental Evaluation of an Improved Ventilation Air Methane-Based Hot Air Power Cycle Integrated with a De-Carbonization Oxy-Coal Combustion Power Plant," Energies, MDPI, vol. 11(6), pages 1-17, June.
    7. Tianqi He & Rongqi Shi & Jie Peng & Weilin Zhuge & Yangjun Zhang, 2016. "Waste Heat Recovery of a PEMFC System by Using Organic Rankine Cycle," Energies, MDPI, vol. 9(4), pages 1-15, April.
    8. Fadhel Ayachi & Elias Boulawz Ksayer & Pierre Neveu, 2012. "Exergy Assessment of Recovery Solutions from Dry and Moist Gas Available at Medium Temperature," Energies, MDPI, vol. 5(3), pages 1-13, March.
    9. Wang, Dexin & Bao, Ainan & Kunc, Walter & Liss, William, 2012. "Coal power plant flue gas waste heat and water recovery," Applied Energy, Elsevier, vol. 91(1), pages 341-348.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng-Xian Lin & Robel Kiflemariam, 2019. "Numerical Simulation and Validation of Thermoeletric Generator Based Self-Cooling System with Airflow," Energies, MDPI, vol. 12(21), pages 1-21, October.
    2. Fangyi Li & Zhaoyang Ye & Xilin Xiao & Dawei Ma, 2019. "Environmental Benefits of Stock Evolution of Coal-Fired Power Generators in China," Sustainability, MDPI, vol. 11(19), pages 1-17, October.
    3. Abdelrahman Lashin & Mohammad Al Turkestani & Mohamed Sabry, 2019. "Concentrated Photovoltaic/Thermal Hybrid System Coupled with a Thermoelectric Generator," Energies, MDPI, vol. 12(13), pages 1-12, July.
    4. Liang, Ying & Cai, Lei & Guan, Yanwen & Liu, Wenbin & Xiang, Yanlei & Li, Juan & He, Tianzhi, 2020. "Numerical study on an original oxy-fuel combustion power plant with efficient utilization of flue gas waste heat," Energy, Elsevier, vol. 193(C).
    5. Pili, Roberto & Romagnoli, Alessandro & Jiménez-Arreola, Manuel & Spliethoff, Hartmut & Wieland, Christoph, 2019. "Simulation of Organic Rankine Cycle – Quasi-steady state vs dynamic approach for optimal economic performance," Energy, Elsevier, vol. 167(C), pages 619-640.
    6. Josip Orović & Vedran Mrzljak & Igor Poljak, 2018. "Efficiency and Losses Analysis of Steam Air Heater from Marine Steam Propulsion Plant," Energies, MDPI, vol. 11(11), pages 1-18, November.
    7. Ma, Youfu & Wang, Zirui & Lu, Junfu & Yang, Lijuan, 2018. "Techno-economic analysis of a novel hot air recirculation process for exhaust heat recovery from a 600 MW brown-coal-fired boiler," Energy, Elsevier, vol. 152(C), pages 348-357.
    8. Meysam Karami Rad & Mahmoud Omid & Ali Rajabipour & Fariba Tajabadi & Lasse Aistrup Rosendahl & Alireza Rezaniakolaei, 2018. "Optimum Thermal Concentration of Solar Thermoelectric Generators (STEG) in Realistic Meteorological Condition," Energies, MDPI, vol. 11(9), pages 1-16, September.
    9. Ayachi, Fadhel & Ksayer, Elias Boulawz & Neveu, Pierre & Zoughaib, Assaad, 2016. "Experimental investigation and modeling of a hermetic scroll expander," Applied Energy, Elsevier, vol. 181(C), pages 256-267.
    10. Baghsheikhi, Mostafa & Sayyaadi, Hoseyn, 2016. "Real-time exergoeconomic optimization of a steam power plant using a soft computing-fuzzy inference system," Energy, Elsevier, vol. 114(C), pages 868-884.
    11. Reddy, V. Siva & Kaushik, S.C. & Tyagi, S.K., 2012. "Exergetic analysis and performance evaluation of parabolic trough concentrating solar thermal power plant (PTCSTPP)," Energy, Elsevier, vol. 39(1), pages 258-273.
    12. Assareh, Ehsanolah & Mousavi Asl, Seyed Sajad & Agarwal, Neha & Ahmadinejad, Mehrdad & Ghodrat, Maryam & Lee, Moonyong, 2023. "New optimized configuration for a hybrid PVT solar/electrolyzer/absorption chiller system utilizing the response surface method as a machine learning technique and multi-objective optimization," Energy, Elsevier, vol. 281(C).
    13. Alijanpour sheshpoli, Mohamad & Mousavi Ajarostaghi, Seyed Soheil & Delavar, Mojtaba Aghajani, 2018. "Waste heat recovery from a 1180 kW proton exchange membrane fuel cell (PEMFC) system by Recuperative organic Rankine cycle (RORC)," Energy, Elsevier, vol. 157(C), pages 353-366.
    14. Raul Garcia-Segura & Javier Vázquez Castillo & Fernando Martell-Chavez & Omar Longoria-Gandara & Jaime Ortegón Aguilar, 2017. "Electric Arc Furnace Modeling with Artificial Neural Networks and Arc Length with Variable Voltage Gradient," Energies, MDPI, vol. 10(9), pages 1-11, September.
    15. Ranjan, K.R. & Kaushik, S.C., 2014. "Thermodynamic and economic feasibility of solar ponds for various thermal applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 123-139.
    16. Fontina Petrakopoulou & Marina Olmeda-Delgado, 2019. "Studying the Reduction of Water Use in Integrated Solar Combined-Cycle Plants," Sustainability, MDPI, vol. 11(7), pages 1-27, April.
    17. Jian Li & Qingfeng Song & Ruiheng Liu & Hongliang Dong & Qihao Zhang & Xun Shi & Shengqiang Bai & Lidong Chen, 2022. "Thermoelectric Performance Optimization of n-Type La 3− x Sm x Te 4 /Ni Composites via Sm Doping," Energies, MDPI, vol. 15(7), pages 1-9, March.
    18. Muhammad Haris Hamayun & Naveed Ramzan & Murid Hussain & Muhammad Faheem, 2020. "Evaluation of Two-Column Air Separation Processes Based on Exergy Analysis," Energies, MDPI, vol. 13(23), pages 1-20, December.
    19. van Kleef, Luuk M.T. & Oyewunmi, Oyeniyi A. & Markides, Christos N., 2019. "Multi-objective thermo-economic optimization of organic Rankine cycle (ORC) power systems in waste-heat recovery applications using computer-aided molecular design techniques," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    20. Li, Hailong & Wang, Bin & Yan, Jinying & Salman, Chaudhary Awais & Thorin, Eva & Schwede, Sebastian, 2019. "Performance of flue gas quench and its influence on biomass fueled CHP," Energy, Elsevier, vol. 180(C), pages 934-945.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:4:p:760-:d:208789. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.