IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v5y2012i3p718-730d16611.html
   My bibliography  Save this article

Exergy Assessment of Recovery Solutions from Dry and Moist Gas Available at Medium Temperature

Author

Listed:
  • Fadhel Ayachi

    (PROMES (PROcédés, Matériaux et Energie Solaire)—CNRS (Centre National de la Recherche Scientifique), Tecnosud Rambla de la thermodynamique, Perpignan 66100, France)

  • Elias Boulawz Ksayer

    (CEP MINES Paris-Tech (Centre Energétique et Procédés), 5 rue Léon Blum, Palaiseau 91120, France)

  • Pierre Neveu

    (PROMES (PROcédés, Matériaux et Energie Solaire)—CNRS (Centre National de la Recherche Scientifique), Tecnosud Rambla de la thermodynamique, Perpignan 66100, France
    Université de Perpignan Via Domitia, 52 avenue Paul Alduy, Perpignan 66860, France)

Abstract

The Agence Nationale de la Recherche (ANR-EESI) ENERGY ReCOvery from Low Temperature heat sources (ENERCO_LT) project is a waste heat recovery project that aims to reduce energy consumption in industrial gas production sites, by producing electrical power from exothermic processes discharges at low and medium temperature. Two promising thermal sources, consisting of: (i) almost dry gas flow at 165 °C and (ii) moist gas flow at 150 °C with a dew point at 60 °C, were then investigated. In this paper, the challenge was to discern suitable recovery solutions facing resource specificities and their thermodynamic constraints, in order to minimize the overall exergy destruction, i.e. , to move up the exergy efficiency of the entire system. In this spirit, different designs, including Organic Rankine Cycles (ORCs) and CO 2 transcritical cycles, operating as simple and cascade cycles, were investigated. Combined exergy analysis and pinch optimization was performed to identify the potential of various working fluids, by their properties, to overcome the global irreversibility according to the studied resource. Supercritical parameters of various working fluids are investigated too, and seem to bring promising results regarding system performances.

Suggested Citation

  • Fadhel Ayachi & Elias Boulawz Ksayer & Pierre Neveu, 2012. "Exergy Assessment of Recovery Solutions from Dry and Moist Gas Available at Medium Temperature," Energies, MDPI, vol. 5(3), pages 1-13, March.
  • Handle: RePEc:gam:jeners:v:5:y:2012:i:3:p:718-730:d:16611
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/5/3/718/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/5/3/718/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Madhawa Hettiarachchi, H.D. & Golubovic, Mihajlo & Worek, William M. & Ikegami, Yasuyuki, 2007. "Optimum design criteria for an Organic Rankine cycle using low-temperature geothermal heat sources," Energy, Elsevier, vol. 32(9), pages 1698-1706.
    2. Liu, Bo-Tau & Chien, Kuo-Hsiang & Wang, Chi-Chuan, 2004. "Effect of working fluids on organic Rankine cycle for waste heat recovery," Energy, Elsevier, vol. 29(8), pages 1207-1217.
    3. Saleh, Bahaa & Koglbauer, Gerald & Wendland, Martin & Fischer, Johann, 2007. "Working fluids for low-temperature organic Rankine cycles," Energy, Elsevier, vol. 32(7), pages 1210-1221.
    4. Schuster, A. & Karellas, S. & Aumann, R., 2010. "Efficiency optimization potential in supercritical Organic Rankine Cycles," Energy, Elsevier, vol. 35(2), pages 1033-1039.
    5. Kanoglu, Mehmet & Bolatturk, Ali, 2008. "Performance and parametric investigation of a binary geothermal power plant by exergy," Renewable Energy, Elsevier, vol. 33(11), pages 2366-2374.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ayachi, Fadhel & Boulawz Ksayer, Elias & Zoughaib, Assaad & Neveu, Pierre, 2014. "ORC optimization for medium grade heat recovery," Energy, Elsevier, vol. 68(C), pages 47-56.
    2. Ayachi, Fadhel & Ksayer, Elias Boulawz & Neveu, Pierre & Zoughaib, Assaad, 2016. "Experimental investigation and modeling of a hermetic scroll expander," Applied Energy, Elsevier, vol. 181(C), pages 256-267.
    3. Oluleye, Gbemi & Jiang, Ning & Smith, Robin & Jobson, Megan, 2017. "A novel screening framework for waste heat utilization technologies," Energy, Elsevier, vol. 125(C), pages 367-381.
    4. Birol Kılkış, 2019. "Development of an Exergy-Rational Method and Optimum Control Algorithm for the Best Utilization of the Flue Gas Heat in Coal-Fired Power Plant Stacks," Energies, MDPI, vol. 12(4), pages 1-19, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nian, Yong-Le & Cheng, Wen-Long, 2018. "Insights into geothermal utilization of abandoned oil and gas wells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 44-60.
    2. Guo, T. & Wang, H.X. & Zhang, S.J., 2011. "Fluids and parameters optimization for a novel cogeneration system driven by low-temperature geothermal sources," Energy, Elsevier, vol. 36(5), pages 2639-2649.
    3. Li, Tailu & Zhu, Jialing & Hu, Kaiyong & Kang, Zhenhua & Zhang, Wei, 2014. "Implementation of PDORC (parallel double-evaporator organic Rankine cycle) to enhance power output in oilfield," Energy, Elsevier, vol. 68(C), pages 680-687.
    4. Cavazzini, G. & Bari, S. & Pavesi, G. & Ardizzon, G., 2017. "A multi-fluid PSO-based algorithm for the search of the best performance of sub-critical Organic Rankine Cycles," Energy, Elsevier, vol. 129(C), pages 42-58.
    5. Ghasemi, Hadi & Paci, Marco & Tizzanini, Alessio & Mitsos, Alexander, 2013. "Modeling and optimization of a binary geothermal power plant," Energy, Elsevier, vol. 50(C), pages 412-428.
    6. Yang, Min-Hsiung & Yeh, Rong-Hua, 2016. "Economic performances optimization of an organic Rankine cycle system with lower global warming potential working fluids in geothermal application," Renewable Energy, Elsevier, vol. 85(C), pages 1201-1213.
    7. Liu, Chao & He, Chao & Gao, Hong & Xie, Hui & Li, Yourong & Wu, Shuangying & Xu, Jinliang, 2013. "The environmental impact of organic Rankine cycle for waste heat recovery through life-cycle assessment," Energy, Elsevier, vol. 56(C), pages 144-154.
    8. Quoilin, Sylvain & Broek, Martijn Van Den & Declaye, Sébastien & Dewallef, Pierre & Lemort, Vincent, 2013. "Techno-economic survey of Organic Rankine Cycle (ORC) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 168-186.
    9. Roy, J.P. & Misra, Ashok, 2012. "Parametric optimization and performance analysis of a regenerative Organic Rankine Cycle using R-123 for waste heat recovery," Energy, Elsevier, vol. 39(1), pages 227-235.
    10. Steven Lecompte & Sanne Lemmens & Henk Huisseune & Martijn Van den Broek & Michel De Paepe, 2015. "Multi-Objective Thermo-Economic Optimization Strategy for ORCs Applied to Subcritical and Transcritical Cycles for Waste Heat Recovery," Energies, MDPI, vol. 8(4), pages 1-28, April.
    11. Kuo, Chi-Ron & Hsu, Sung-Wei & Chang, Kai-Han & Wang, Chi-Chuan, 2011. "Analysis of a 50kW organic Rankine cycle system," Energy, Elsevier, vol. 36(10), pages 5877-5885.
    12. Hong Gao & Chao Liu & Chao He & Xiaoxiao Xu & Shuangying Wu & Yourong Li, 2012. "Performance Analysis and Working Fluid Selection of a Supercritical Organic Rankine Cycle for Low Grade Waste Heat Recovery," Energies, MDPI, vol. 5(9), pages 1-15, August.
    13. Schuster, A. & Karellas, S. & Aumann, R., 2010. "Efficiency optimization potential in supercritical Organic Rankine Cycles," Energy, Elsevier, vol. 35(2), pages 1033-1039.
    14. Li, You-Rong & Wang, Jian-Ning & Du, Mei-Tang, 2012. "Influence of coupled pinch point temperature difference and evaporation temperature on performance of organic Rankine cycle," Energy, Elsevier, vol. 42(1), pages 503-509.
    15. Ayachi, Fadhel & Boulawz Ksayer, Elias & Zoughaib, Assaad & Neveu, Pierre, 2014. "ORC optimization for medium grade heat recovery," Energy, Elsevier, vol. 68(C), pages 47-56.
    16. Tchanche, Bertrand F. & Lambrinos, Gr. & Frangoudakis, A. & Papadakis, G., 2011. "Low-grade heat conversion into power using organic Rankine cycles – A review of various applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3963-3979.
    17. Roy, J.P. & Mishra, M.K. & Misra, Ashok, 2010. "Parametric optimization and performance analysis of a waste heat recovery system using Organic Rankine Cycle," Energy, Elsevier, vol. 35(12), pages 5049-5062.
    18. Ram Mohan, Arun & Turaga, Uday & Shembekar, Vishakha & Elsworth, Derek & Pisupati, Sarma V., 2013. "Utilization of carbon dioxide from coal-based power plants as a heat transfer fluid for electricity generation in enhanced geothermal systems (EGS)," Energy, Elsevier, vol. 57(C), pages 505-512.
    19. Kim, Kyeongsu & Lee, Ung & Kim, Changsoo & Han, Chonghun, 2015. "Design and optimization of cascade organic Rankine cycle for recovering cryogenic energy from liquefied natural gas using binary working fluid," Energy, Elsevier, vol. 88(C), pages 304-313.
    20. Vélez, Fredy & Segovia, José J. & Martín, M. Carmen & Antolín, Gregorio & Chejne, Farid & Quijano, Ana, 2012. "A technical, economical and market review of organic Rankine cycles for the conversion of low-grade heat for power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4175-4189.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:5:y:2012:i:3:p:718-730:d:16611. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.