IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v281y2023ics0360544223017036.html
   My bibliography  Save this article

New optimized configuration for a hybrid PVT solar/electrolyzer/absorption chiller system utilizing the response surface method as a machine learning technique and multi-objective optimization

Author

Listed:
  • Assareh, Ehsanolah
  • Mousavi Asl, Seyed Sajad
  • Agarwal, Neha
  • Ahmadinejad, Mehrdad
  • Ghodrat, Maryam
  • Lee, Moonyong

Abstract

The presented study examined the multigenerational power, cooling, heating, and hydrogen systems in coastal areas using thermodynamic and economic modeling and multiobjective optimization tools. The organic Rankine cycle (ORC), water heater, proton-exchange membrane (PEM) electrolyzer, absorption chiller, and photovoltaic (PV/T) panel were all included in a case study that was carried out in four different regions. In the EES, the suggested system was thermodynamically modeled. By utilizing the surface response (RSM) methodology, multi-objective optimization was carried out to identify the ideal PV/T area, turbine efficiency, evaporator pinch point, pump efficiency, and turbine input temperature. The ideal cost rate and exergy efficiency were 1.299 USD/h and 19.100%, respectively. The feasibility of the suggested module was studied in coastal areas of San Francisco (America), Dubai (Asia), Barcelona (Europe), and Melbourne (Oceania). Finally, the system's effectiveness in providing the power, cooling, and heating demands of a two-floor two-unit building during the year was evaluated.

Suggested Citation

  • Assareh, Ehsanolah & Mousavi Asl, Seyed Sajad & Agarwal, Neha & Ahmadinejad, Mehrdad & Ghodrat, Maryam & Lee, Moonyong, 2023. "New optimized configuration for a hybrid PVT solar/electrolyzer/absorption chiller system utilizing the response surface method as a machine learning technique and multi-objective optimization," Energy, Elsevier, vol. 281(C).
  • Handle: RePEc:eee:energy:v:281:y:2023:i:c:s0360544223017036
    DOI: 10.1016/j.energy.2023.128309
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223017036
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128309?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pourmoghadam, Peyman & Kasaeian, Alibakhsh, 2023. "Economic and energy evaluation of a solar multi-generation system powered by the parabolic trough collectors," Energy, Elsevier, vol. 262(PA).
    2. Shrestha, Anil & Mustafa, Andy Ali & Htike, Myo Myo & You, Vithyea & Kakinaka, Makoto, 2022. "Evolution of energy mix in emerging countries: Modern renewable energy, traditional renewable energy, and non-renewable energy," Renewable Energy, Elsevier, vol. 199(C), pages 419-432.
    3. Alijanpour sheshpoli, Mohamad & Mousavi Ajarostaghi, Seyed Soheil & Delavar, Mojtaba Aghajani, 2018. "Waste heat recovery from a 1180 kW proton exchange membrane fuel cell (PEMFC) system by Recuperative organic Rankine cycle (RORC)," Energy, Elsevier, vol. 157(C), pages 353-366.
    4. Ahmadi, Pouria & Rosen, Marc A. & Dincer, Ibrahim, 2012. "Multi-objective exergy-based optimization of a polygeneration energy system using an evolutionary algorithm," Energy, Elsevier, vol. 46(1), pages 21-31.
    5. Tianqi He & Rongqi Shi & Jie Peng & Weilin Zhuge & Yangjun Zhang, 2016. "Waste Heat Recovery of a PEMFC System by Using Organic Rankine Cycle," Energies, MDPI, vol. 9(4), pages 1-15, April.
    6. Sajid, Zaman & Khan, Faisal & Zhang, Yan, 2016. "Process simulation and life cycle analysis of biodiesel production," Renewable Energy, Elsevier, vol. 85(C), pages 945-952.
    7. Ozturk, Merve & Dincer, Ibrahim, 2022. "System development and assessment for green hydrogen generation and blending with natural gas," Energy, Elsevier, vol. 261(PB).
    8. Izadi, Ali & Shahafve, Masoomeh & Ahmadi, Pouria & Hanafizadeh, Pedram, 2023. "Design, and optimization of COVID-19 hospital wards to produce Oxygen and electricity through solar PV panels with hydrogen storage systems by neural network-genetic algorithm," Energy, Elsevier, vol. 263(PA).
    9. Perna, Alessandra & Minutillo, Mariagiovanna & Jannelli, Elio, 2015. "Investigations on an advanced power system based on a high temperature polymer electrolyte membrane fuel cell and an organic Rankine cycle for heating and power production," Energy, Elsevier, vol. 88(C), pages 874-884.
    10. Boyaghchi, Fateme Ahmadi & Chavoshi, Mansoure & Sabeti, Vajiheh, 2018. "Multi-generation system incorporated with PEM electrolyzer and dual ORC based on biomass gasification waste heat recovery: Exergetic, economic and environmental impact optimizations," Energy, Elsevier, vol. 145(C), pages 38-51.
    11. Arabkoohsar, A., 2019. "Non-uniform temperature district heating system with decentralized heat pumps and standalone storage tanks," Energy, Elsevier, vol. 170(C), pages 931-941.
    12. Raffaello Cozzolino, 2018. "Thermodynamic Performance Assessment of a Novel Micro-CCHP System Based on a Low Temperature PEMFC Power Unit and a Half-Effect Li/Br Absorption Chiller," Energies, MDPI, vol. 11(2), pages 1-21, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan, Manli & Yao, Zhang & Nutakki, Tirumala Uday Kumar & Kumar Agrawal, Manoj & Muhammad, Taseer & Albani, Aliashim & Zhao, Zhanping, 2023. "Design and evaluation of a novel heliostat-based combined cooling, heating, and power (CCHP) system: 3E analysis and multi-criteria optimization by response surface methodology (RSM)," Energy, Elsevier, vol. 285(C).
    2. Hoseinzadeh, Siamak & Astiaso Garcia, Davide & Huang, Lizhen, 2023. "Grid-connected renewable energy systems flexibility in Norway islands’ Decarbonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    3. Slavin, Brittney & Wang, Ruiqi & Roy, Dibyendu & Ling-Chin, Janie & Roskilly, Anthony Paul, 2024. "Techno-economic analysis of direct air carbon capture and hydrogen production integrated with a small modular reactor," Applied Energy, Elsevier, vol. 356(C).
    4. Lykas, Panagiotis & Bellos, Evangelos & Kitsopoulou, Angeliki & Sammoutos, Christos & Tzivanidis, Christos, 2024. "Electricity and hydrogen cogeneration: A case study simulation via the Aspen plus tool," Energy, Elsevier, vol. 294(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dezhdar, Ali & Assareh, Ehsanolah & Agarwal, Neha & bedakhanian, Ali & Keykhah, Sajjad & fard, Ghazaleh yeganeh & zadsar, Narjes & Aghajari, Mona & Lee, Moonyong, 2023. "Transient optimization of a new solar-wind multi-generation system for hydrogen production, desalination, clean electricity, heating, cooling, and energy storage using TRNSYS," Renewable Energy, Elsevier, vol. 208(C), pages 512-537.
    2. Wang, Chenfang & Li, Qingshan & Wang, Chunmei & Zhang, Yangjun & Zhuge, Weilin, 2021. "Thermodynamic analysis of a hydrogen fuel cell waste heat recovery system based on a zeotropic organic Rankine cycle," Energy, Elsevier, vol. 232(C).
    3. Li, Yanju & Li, Dongxu & Ma, Zheshu & Zheng, Meng & Lu, Zhanghao & Song, Hanlin & Guo, Xinjia & Shao, Wei, 2022. "Performance analysis and optimization of a novel vehicular power system based on HT-PEMFC integrated methanol steam reforming and ORC," Energy, Elsevier, vol. 257(C).
    4. Lu, Xinyu & Du, Banghua & Zhu, Wenchao & Yang, Yang & Xie, Changjun & Tu, Zhengkai & Zhao, Bo & Zhang, Leiqi & Wang, Jianqiang & Yang, Zheng, 2024. "Multi-criteria assessment of an auxiliary energy system for desalination plant based on PEMFC-ORC combined heat and power," Energy, Elsevier, vol. 290(C).
    5. Guo, Xinru & Zhang, Houcheng & Hu, Ziyang & Hou, Shujin & Ni, Meng & Liao, Tianjun, 2021. "Energetic, exergetic and ecological evaluations of a hybrid system based on a phosphoric acid fuel cell and an organic Rankine cycle," Energy, Elsevier, vol. 217(C).
    6. Nami, Hossein & Anvari-Moghaddam, Amjad, 2020. "Small-scale CCHP systems for waste heat recovery from cement plants: Thermodynamic, sustainability and economic implications," Energy, Elsevier, vol. 192(C).
    7. Shantanu Pardhi & Sajib Chakraborty & Dai-Duong Tran & Mohamed El Baghdadi & Steven Wilkins & Omar Hegazy, 2022. "A Review of Fuel Cell Powertrains for Long-Haul Heavy-Duty Vehicles: Technology, Hydrogen, Energy and Thermal Management Solutions," Energies, MDPI, vol. 15(24), pages 1-55, December.
    8. Farzad Hamrang & Afshar Shokri & S. M. Seyed Mahmoudi & Biuk Ehghaghi & Marc A. Rosen, 2020. "Performance Analysis of a New Electricity and Freshwater Production System Based on an Integrated Gasification Combined Cycle and Multi-Effect Desalination," Sustainability, MDPI, vol. 12(19), pages 1-29, September.
    9. Wilailak, Supaporn & Yang, Jae-Hyeon & Heo, Chul-Gu & Kim, Kyung-Su & Bang, Se-Kyung & Seo, In-Ho & Zahid, Umer & Lee, Chul-Jin, 2021. "Thermo-economic analysis of Phosphoric Acid Fuel-Cell (PAFC) integrated with Organic Ranking Cycle (ORC)," Energy, Elsevier, vol. 220(C).
    10. Gabriele Loreti & Andrea Luigi Facci & Stefano Ubertini, 2021. "High-Efficiency Combined Heat and Power through a High-Temperature Polymer Electrolyte Membrane Fuel Cell and Gas Turbine Hybrid System," Sustainability, MDPI, vol. 13(22), pages 1-24, November.
    11. Guo, Yurun & Wang, Shugang & Wang, Jihong & Zhang, Tengfei & Ma, Zhenjun & Jiang, Shuang, 2024. "Key district heating technologies for building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    12. Altayib, Khalid & Dincer, Ibrahim, 2022. "Development of an integrated hydropower system with hydrogen and methanol production," Energy, Elsevier, vol. 240(C).
    13. Ahmadi, Pouria & Dincer, Ibrahim & Rosen, Marc A., 2014. "Thermoeconomic multi-objective optimization of a novel biomass-based integrated energy system," Energy, Elsevier, vol. 68(C), pages 958-970.
    14. Bakhshmand, Sina Kazemi & Saray, Rahim Khoshbakhti & Bahlouli, Keyvan & Eftekhari, Hajar & Ebrahimi, Afshin, 2015. "Exergoeconomic analysis and optimization of a triple-pressure combined cycle plant using evolutionary algorithm," Energy, Elsevier, vol. 93(P1), pages 555-567.
    15. Khounani, Zahra & Hosseinzadeh-Bandbafha, Homa & Nizami, Abdul-Sattar & Sulaiman, Alawi & Goli, Sayed Amir Hossein & Tavassoli-Kafrani, Elham & Ghaffari, Akram & Rajaeifar, Mohammad Ali & Kim, Ki-Hyun, 2020. "Unlocking the potential of walnut husk extract in the production of waste cooking oil-based biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    16. Ebrahimi-Moghadam, Amir & Farzaneh-Gord, Mahmood, 2022. "Optimal operation of a multi-generation district energy hub based on electrical, heating, and cooling demands and hydrogen production," Applied Energy, Elsevier, vol. 309(C).
    17. Guozheng Li & Rui Wang & Tao Zhang & Mengjun Ming, 2018. "Multi-Objective Optimal Design of Renewable Energy Integrated CCHP System Using PICEA-g," Energies, MDPI, vol. 11(4), pages 1-26, March.
    18. Golberg, Alexander, 2015. "Environmental exergonomics for sustainable design and analysis of energy systems," Energy, Elsevier, vol. 88(C), pages 314-321.
    19. Song, Yuguang & Xia, Mingchao & Yang, Liu & Chen, Qifang & Su, Su, 2023. "Multi-granularity source-load-storage cooperative dispatch based on combined robust optimization and stochastic optimization for a highway service area micro-energy grid," Renewable Energy, Elsevier, vol. 205(C), pages 747-762.
    20. Francesca Ceglia & Adriano Macaluso & Elisa Marrasso & Carlo Roselli & Laura Vanoli, 2020. "Energy, Environmental, and Economic Analyses of Geothermal Polygeneration System Using Dynamic Simulations," Energies, MDPI, vol. 13(18), pages 1-34, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:281:y:2023:i:c:s0360544223017036. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.