IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i4p605-d205860.html
   My bibliography  Save this article

Source Term Modelling of Vane-Type Vortex Generators under Adverse Pressure Gradient in OpenFOAM

Author

Listed:
  • Iñigo Errasti

    (Nuclear Engineering and Fluid Mechanics Department, University of the Basque Country, E-01009 Vitoria-Gasteiz, Spain)

  • Unai Fernández-Gamiz

    (Nuclear Engineering and Fluid Mechanics Department, University of the Basque Country, E-01009 Vitoria-Gasteiz, Spain)

  • Pablo Martínez-Filgueira

    (Nuclear Engineering and Fluid Mechanics Department, University of the Basque Country, E-01009 Vitoria-Gasteiz, Spain)

  • Jesús María Blanco

    (Nuclear Engineering and Fluid Mechanics Department, University of the Basque Country, E-01009 Vitoria-Gasteiz, Spain)

Abstract

An analysis of the generation of vortices and their effects by vane-type vortex generators (VGs) positioned on a three-dimensional flat plate with a backward-facing ramp and adverse gradient pressure is carried out. The effects of a conventional vortex generator and a sub-boundary layer vortex generator are implemented by using a source term in the corresponding Navier-Stokes equations of momentum and energy according to the so-called jBAY Source Term Model. The influence of the vortex generator onto the computational domain flow is modelled through this source term in the Computational Fluid Dynamics (CFD) simulations using the open-source code OpenFOAM. The Source Term Model seems to simulate relatively well the streamwise pressure coefficient distributions all along the flat plate floor as well as certain parameters studied for vortex characterization such as vortex path, decay and size for the two vane-type vortex generators of different heights studied. Consequently, the implementation of the Source Term Model represents an advantage over a fully Mesh-Resolved Vortex Generator Model for certain applications as a result of a meaningful decrease in the cell number of the computational domain which implies saving computational time and resources.

Suggested Citation

  • Iñigo Errasti & Unai Fernández-Gamiz & Pablo Martínez-Filgueira & Jesús María Blanco, 2019. "Source Term Modelling of Vane-Type Vortex Generators under Adverse Pressure Gradient in OpenFOAM," Energies, MDPI, vol. 12(4), pages 1-21, February.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:4:p:605-:d:205860
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/4/605/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/4/605/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gao, Linyue & Zhang, Hui & Liu, Yongqian & Han, Shuang, 2015. "Effects of vortex generators on a blunt trailing-edge airfoil for wind turbines," Renewable Energy, Elsevier, vol. 76(C), pages 303-311.
    2. Ruben Gutierrez-Amo & Unai Fernandez-Gamiz & Iñigo Errasti & Ekaitz Zulueta, 2018. "Computational Modelling of Three Different Sub-Boundary Layer Vortex Generators on a Flat Plate," Energies, MDPI, vol. 11(11), pages 1-21, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenhui Huang & Lei Chen & Weijia Wang & Lijun Yang & Xiaoze Du, 2020. "Cooling Performance Optimization of Direct Dry Cooling System Based on Partition Adjustment of Axial Flow Fans," Energies, MDPI, vol. 13(12), pages 1-22, June.
    2. Sergio Chillon & Antxon Uriarte-Uriarte & Iñigo Aramendia & Pablo Martínez-Filgueira & Unai Fernandez-Gamiz & Iosu Ibarra-Udaeta, 2020. "jBAY Modeling of Vane-Type Vortex Generators and Study on Airfoil Aerodynamic Performance," Energies, MDPI, vol. 13(10), pages 1-15, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alejandro Ballesteros-Coll & Unai Fernandez-Gamiz & Iñigo Aramendia & Ekaitz Zulueta & Jose Manuel Lopez-Guede, 2020. "Computational Methods for Modelling and Optimization of Flow Control Devices," Energies, MDPI, vol. 13(14), pages 1-15, July.
    2. Serdar GENÇ, Mustafa & KOCA, Kemal & AÇIKEL, Halil Hakan, 2019. "Investigation of pre-stall flow control on wind turbine blade airfoil using roughness element," Energy, Elsevier, vol. 176(C), pages 320-334.
    3. Zhaohuang Zhang & Weiwei Li, 2022. "Calculation of the Strength of Vortex Currents Induced by Vortex Generators on Flat Plates and the Evaluation of Their Performance," Energies, MDPI, vol. 15(7), pages 1-15, March.
    4. Zhong, Junwei & Li, Jingyin & Liu, Huizhong, 2023. "Dynamic mode decomposition analysis of flow separation control on wind turbine airfoil using leading−edge rod," Energy, Elsevier, vol. 268(C).
    5. Bhavsar, Het & Roy, Sukanta & Niyas, Hakeem, 2023. "Aerodynamic performance enhancement of the DU99W405 airfoil for horizontal axis wind turbines using slotted airfoil configuration," Energy, Elsevier, vol. 263(PA).
    6. Md Zishan Akhter & Farag Khalifa Omar, 2021. "Review of Flow-Control Devices for Wind-Turbine Performance Enhancement," Energies, MDPI, vol. 14(5), pages 1-35, February.
    7. Sergio Chillon & Antxon Uriarte-Uriarte & Iñigo Aramendia & Pablo Martínez-Filgueira & Unai Fernandez-Gamiz & Iosu Ibarra-Udaeta, 2020. "jBAY Modeling of Vane-Type Vortex Generators and Study on Airfoil Aerodynamic Performance," Energies, MDPI, vol. 13(10), pages 1-15, May.
    8. Gorle, J.M.R. & Chatellier, L. & Pons, F. & Ba, M., 2019. "Modulated circulation control around the blades of a vertical axis hydrokinetic turbine for flow control and improved performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 363-377.
    9. Zhuang, Chen & Yang, Gang & Zhu, Yawei & Hu, Dean, 2020. "Effect of morphed trailing-edge flap on aerodynamic load control for a wind turbine blade section," Renewable Energy, Elsevier, vol. 148(C), pages 964-974.
    10. Davide Astolfi & Francesco Castellani, 2019. "Wind Turbine Power Curve Upgrades: Part II," Energies, MDPI, vol. 12(8), pages 1-20, April.
    11. Azlan, F. & Tan, M.K. & Tan, B.T. & Ismadi, M.-Z., 2023. "Passive flow-field control using dimples for performance enhancement of horizontal axis wind turbine," Energy, Elsevier, vol. 271(C).
    12. Wang, Haipeng & Zhang, Bo & Qiu, Qinggang & Xu, Xiang, 2017. "Flow control on the NREL S809 wind turbine airfoil using vortex generators," Energy, Elsevier, vol. 118(C), pages 1210-1221.
    13. Mustafa Özden & Mustafa Serdar Genç & Kemal Koca, 2023. "Passive Flow Control Application Using Single and Double Vortex Generator on S809 Wind Turbine Airfoil," Energies, MDPI, vol. 16(14), pages 1-17, July.
    14. Kundu, Parikshit & Sarkar, Arunjyoti & Nagarajan, Vishwanath, 2019. "Improvement of performance of S1210 hydrofoil with vortex generators and modified trailing edge," Renewable Energy, Elsevier, vol. 142(C), pages 643-657.
    15. He-Yong Xu & Chen-Liang Qiao & Zheng-Yin Ye, 2016. "Dynamic Stall Control on the Wind Turbine Airfoil via a Co-Flow Jet," Energies, MDPI, vol. 9(6), pages 1-25, June.
    16. Chengyong Zhu & Tongguang Wang & Jianghai Wu, 2019. "Numerical Investigation of Passive Vortex Generators on a Wind Turbine Airfoil Undergoing Pitch Oscillations," Energies, MDPI, vol. 12(4), pages 1-19, February.
    17. Unai Fernandez-Gamiz & Ekaitz Zulueta & Ana Boyano & Igor Ansoategui & Irantzu Uriarte, 2017. "Five Megawatt Wind Turbine Power Output Improvements by Passive Flow Control Devices," Energies, MDPI, vol. 10(6), pages 1-15, May.
    18. Ali Awada & Rafic Younes & Adrian Ilinca, 2021. "Review of Vibration Control Methods for Wind Turbines," Energies, MDPI, vol. 14(11), pages 1-35, May.
    19. Fatehi, Mostafa & Nili-Ahmadabadi, Mahdi & Nematollahi, Omid & Minaiean, Ali & Kim, Kyung Chun, 2019. "Aerodynamic performance improvement of wind turbine blade by cavity shape optimization," Renewable Energy, Elsevier, vol. 132(C), pages 773-785.
    20. McKenna, R. & Ostman v.d. Leye, P. & Fichtner, W., 2016. "Key challenges and prospects for large wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1212-1221.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:4:p:605-:d:205860. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.