IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v173y2019icp1078-1091.html
   My bibliography  Save this article

Private investor-based distributed generation expansion planning considering uncertainties of renewable generations

Author

Listed:
  • Barati, Fatemeh
  • Jadid, Shahram
  • Zangeneh, Ali

Abstract

Distributed generation expansion planning (DGEP) is one of the most important types of planning in power distribution networks. Most of the previous studies associated with the DGEP problem have been performed from the viewpoint of network owner, while the investment, sizing and siting of Distributed Generations (DGs) are mostly taken by the private sector. Therefore, DGEP problem in the viewpoint of private investors should be taken into special consideration. In this paper, attempts are made to propose a model for DGEP problem based on the private investor's viewpoint to meet their objectives and also, take the technical constraints of the distribution network into account, at the same time. In this light, the uncertainties of the renewable DGs have also been considered in the problem and the Hong's Two Point Estimate Method (HTPEM) is used to provide a solution for probabilistic load flow problem. The method presented in this paper has been applied to the modified 18-bus distribution network which has been derived from the 30-bus IEEE system.

Suggested Citation

  • Barati, Fatemeh & Jadid, Shahram & Zangeneh, Ali, 2019. "Private investor-based distributed generation expansion planning considering uncertainties of renewable generations," Energy, Elsevier, vol. 173(C), pages 1078-1091.
  • Handle: RePEc:eee:energy:v:173:y:2019:i:c:p:1078-1091
    DOI: 10.1016/j.energy.2019.02.086
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219302816
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.02.086?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Siddiqui, Afzal S. & Maribu, Karl, 2009. "Investment and upgrade in distributed generation under uncertainty," Energy Economics, Elsevier, vol. 31(1), pages 25-37, January.
    2. Fu, Xueqian & Chen, Haoyong & Cai, Runqing & Yang, Ping, 2015. "Optimal allocation and adaptive VAR control of PV-DG in distribution networks," Applied Energy, Elsevier, vol. 137(C), pages 173-182.
    3. Prakash, Prem & Khatod, Dheeraj K., 2016. "Optimal sizing and siting techniques for distributed generation in distribution systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 111-130.
    4. Aman, M.M. & Jasmon, G.B. & Bakar, A.H.A. & Mokhlis, H., 2014. "A new approach for optimum simultaneous multi-DG distributed generation Units placement and sizing based on maximization of system loadability using HPSO (hybrid particle swarm optimization) algorithm," Energy, Elsevier, vol. 66(C), pages 202-215.
    5. Moradi, Mohammad H. & Eskandari, Mohsen, 2014. "A hybrid method for simultaneous optimization of DG capacity and operational strategy in microgrids considering uncertainty in electricity price forecasting," Renewable Energy, Elsevier, vol. 68(C), pages 697-714.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tabar, Vahid Sohrabi & Banazadeh, Hamidreza & Tostado-Véliz, Marcos & Jordehi, Ahmad Rezaee & Nasir, Mohammad & Jurado, Francisco, 2022. "Stochastic multi-stage multi-objective expansion of renewable resources and electrical energy storage units in distribution systems considering crypto-currency miners and responsive loads," Renewable Energy, Elsevier, vol. 198(C), pages 1131-1147.
    2. Zeeshan Memon Anjum & Dalila Mat Said & Mohammad Yusri Hassan & Zohaib Hussain Leghari & Gul Sahar, 2022. "Parallel operated hybrid Arithmetic-Salp swarm optimizer for optimal allocation of multiple distributed generation units in distribution networks," PLOS ONE, Public Library of Science, vol. 17(4), pages 1-38, April.
    3. Atkinson, Travis R. & Preckel, Paul V. & Gotham, Douglas, 2021. "Long-term investment planning for the electricity sector in Small Island Developing States: Case study for Jamaica," Energy, Elsevier, vol. 228(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rezaee Jordehi, Ahmad, 2016. "Allocation of distributed generation units in electric power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 893-905.
    2. Zeeshan Memon Anjum & Dalila Mat Said & Mohammad Yusri Hassan & Zohaib Hussain Leghari & Gul Sahar, 2022. "Parallel operated hybrid Arithmetic-Salp swarm optimizer for optimal allocation of multiple distributed generation units in distribution networks," PLOS ONE, Public Library of Science, vol. 17(4), pages 1-38, April.
    3. Kumar Mahesh & Perumal Nallagownden & Irraivan Elamvazuthi, 2016. "Advanced Pareto Front Non-Dominated Sorting Multi-Objective Particle Swarm Optimization for Optimal Placement and Sizing of Distributed Generation," Energies, MDPI, vol. 9(12), pages 1-23, November.
    4. Fu, Xueqian & Guo, Qinglai & Sun, Hongbin & Pan, Zhaoguang & Xiong, Wen & Wang, Li, 2017. "Typical scenario set generation algorithm for an integrated energy system based on the Wasserstein distance metric," Energy, Elsevier, vol. 135(C), pages 153-170.
    5. Adkins, Roger & Paxson, Dean, 2019. "Rescaling-contraction with a lower cost technology when revenue declines," European Journal of Operational Research, Elsevier, vol. 277(2), pages 574-586.
    6. Barik, Soumyabrata & Das, Debapriya, 2020. "A novel Q−PQV bus pair method of biomass DGs placement in distribution networks to maintain the voltage of remotely located buses," Energy, Elsevier, vol. 194(C).
    7. Razavi, Seyed-Ehsan & Rahimi, Ehsan & Javadi, Mohammad Sadegh & Nezhad, Ali Esmaeel & Lotfi, Mohamed & Shafie-khah, Miadreza & Catalão, João P.S., 2019. "Impact of distributed generation on protection and voltage regulation of distribution systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 157-167.
    8. Aouss Gabash & Pu Li, 2016. "On Variable Reverse Power Flow-Part II: An Electricity Market Model Considering Wind Station Size and Location," Energies, MDPI, vol. 9(4), pages 1-13, March.
    9. Chen, Yen-Haw & Lu, Su-Ying & Chang, Yung-Ruei & Lee, Ta-Tung & Hu, Ming-Che, 2013. "Economic analysis and optimal energy management models for microgrid systems: A case study in Taiwan," Applied Energy, Elsevier, vol. 103(C), pages 145-154.
    10. Bornapour, Mosayeb & Hooshmand, Rahmat-Allah, 2015. "An efficient scenario-based stochastic programming for optimal planning of combined heat, power, and hydrogen production of molten carbonate fuel cell power plants," Energy, Elsevier, vol. 83(C), pages 734-748.
    11. Rocha, Paula & Kaut, Michal & Siddiqui, Afzal S., 2016. "Energy-efficient building retrofits: An assessment of regulatory proposals under uncertainty," Energy, Elsevier, vol. 101(C), pages 278-287.
    12. Sultana, U. & Khairuddin, Azhar B. & Aman, M.M. & Mokhtar, A.S. & Zareen, N., 2016. "A review of optimum DG placement based on minimization of power losses and voltage stability enhancement of distribution system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 363-378.
    13. Madlener, Reinhard & Stoverink, Simon, 2012. "Power plant investments in the Turkish electricity sector: A real options approach taking into account market liberalization," Applied Energy, Elsevier, vol. 97(C), pages 124-134.
    14. Michail Chronopoulos & Verena Hagspiel & Stein-Erik Fleten, 2017. "Stepwise investment and capacity sizing under uncertainty," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(2), pages 447-472, March.
    15. Ibrahim, Muhammad Sohail & Dong, Wei & Yang, Qiang, 2020. "Machine learning driven smart electric power systems: Current trends and new perspectives," Applied Energy, Elsevier, vol. 272(C).
    16. Li-Peng Shao & Jia-Jia Chen & Lu-Wen Pan & Zi-Juan Yang, 2022. "A Credibility Theory-Based Robust Optimization Model to Hedge Price Uncertainty of DSO with Multiple Transactions," Mathematics, MDPI, vol. 10(23), pages 1-20, November.
    17. Das, Sangeeta & Das, Debapriya & Patra, Amit, 2019. "Operation of distribution network with optimal placement and sizing of dispatchable DGs and shunt capacitors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    18. Sultana, U. & Khairuddin, Azhar B. & Sultana, Beenish & Rasheed, Nadia & Qazi, Sajid Hussain & Malik, Nimra Riaz, 2018. "Placement and sizing of multiple distributed generation and battery swapping stations using grasshopper optimizer algorithm," Energy, Elsevier, vol. 165(PA), pages 408-421.
    19. Ahmad Khan, Aftab & Naeem, Muhammad & Iqbal, Muhammad & Qaisar, Saad & Anpalagan, Alagan, 2016. "A compendium of optimization objectives, constraints, tools and algorithms for energy management in microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1664-1683.
    20. Zheng, Yingying & Jenkins, Bryan M. & Kornbluth, Kurt & Træholt, Chresten, 2018. "Optimization under uncertainty of a biomass-integrated renewable energy microgrid with energy storage," Renewable Energy, Elsevier, vol. 123(C), pages 204-217.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:173:y:2019:i:c:p:1078-1091. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.