IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i4p1341-d748180.html
   My bibliography  Save this article

A Novel Analytical Approach for Optimal Integration of Renewable Energy Sources in Distribution Systems

Author

Listed:
  • Prem Prakash

    (Electrical Engineering Department, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi 110042, India)

  • Duli Chand Meena

    (Electrical Engineering Department, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi 110042, India)

  • Hasmat Malik

    (BEARS, University Town, NUS Campus, Singapore 138602, Singapore)

  • Majed A. Alotaibi

    (Department of Electrical Engineering, College of Engineering, King Saud University, Riyadh 114211, Saudi Arabia)

  • Irfan Ahmad Khan

    (Clean and Resilient Energy Systems (CARES) Lab, Electrical and Computer Engineering Department, Texas A&M University, Galveston, TX 77553, USA)

Abstract

The present research article focuses on an analytically based method for the optimal allocation and sizing of a renewable energy source (RES) capable of injecting both active and reactive powers in the distribution network. The placement of distributed generation (DG) in the distribution network reduces the magnitude of branch current in between the reference bus and the bus where DG is to be installed. Due to this, system power loss decreases significantly. The proposed method considers different levels of load in addition to peak load demand. The goal of the developed method is to minimize system losses by optimal DG allocations. In the proposed method, the optimum size of the DG is obtained on the basis of maximum loss saving criterion. For the execution of proposed method, only a base case load flow solution is required. The developed method has been tested on IEEE 69-bus and 33-bus radial distribution networks. On the basis of obtained results, it has been realized that the developed method is more capable of diminishing system energy losses.

Suggested Citation

  • Prem Prakash & Duli Chand Meena & Hasmat Malik & Majed A. Alotaibi & Irfan Ahmad Khan, 2022. "A Novel Analytical Approach for Optimal Integration of Renewable Energy Sources in Distribution Systems," Energies, MDPI, vol. 15(4), pages 1-23, February.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1341-:d:748180
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/4/1341/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/4/1341/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Prakash, Prem & Khatod, Dheeraj K., 2016. "Optimal sizing and siting techniques for distributed generation in distribution systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 111-130.
    2. Hung, Duong Quoc & Mithulananthan, N. & Bansal, R.C., 2013. "Analytical strategies for renewable distributed generation integration considering energy loss minimization," Applied Energy, Elsevier, vol. 105(C), pages 75-85.
    3. Hung, Duong Quoc & Mithulananthan, N. & Bansal, R.C., 2014. "Integration of PV and BES units in commercial distribution systems considering energy loss and voltage stability," Applied Energy, Elsevier, vol. 113(C), pages 1162-1170.
    4. Esmaili, Masoud & Firozjaee, Esmail Chaktan & Shayanfar, Heidar Ali, 2014. "Optimal placement of distributed generations considering voltage stability and power losses with observing voltage-related constraints," Applied Energy, Elsevier, vol. 113(C), pages 1252-1260.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gubbala Venkata Naga Lakshmi & Askani Jaya Laxmi & Venkataramana Veeramsetty & Surender Reddy Salkuti, 2022. "Optimal Placement of Distributed Generation Based on Power Quality Improvement Using Self-Adaptive Lévy Flight Jaya Algorithm," Clean Technol., MDPI, vol. 4(4), pages 1-13, November.
    2. Fathy, Ahmed, 2022. "A novel artificial hummingbird algorithm for integrating renewable based biomass distributed generators in radial distribution systems," Applied Energy, Elsevier, vol. 323(C).
    3. Mahmoud Aref & Vladislav Oboskalov & Adel El-Shahat & Almoataz Y. Abdelaziz, 2023. "Modified Analytical Technique for Multi-Objective Optimal Placement of High-Level Renewable Energy Penetration Connected to Egyptian Power System," Mathematics, MDPI, vol. 11(4), pages 1-31, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xydas, Erotokritos & Marmaras, Charalampos & Cipcigan, Liana M., 2016. "A multi-agent based scheduling algorithm for adaptive electric vehicles charging," Applied Energy, Elsevier, vol. 177(C), pages 354-365.
    2. Muttaqi, K.M. & Le, An D.T. & Aghaei, J. & Mahboubi-Moghaddam, E. & Negnevitsky, M. & Ledwich, G., 2016. "Optimizing distributed generation parameters through economic feasibility assessment," Applied Energy, Elsevier, vol. 165(C), pages 893-903.
    3. Fu, Xueqian & Chen, Haoyong & Cai, Runqing & Yang, Ping, 2015. "Optimal allocation and adaptive VAR control of PV-DG in distribution networks," Applied Energy, Elsevier, vol. 137(C), pages 173-182.
    4. Vikas Singh Bhadoria & Nidhi Singh Pal & Vivek Shrivastava, 2019. "Artificial immune system based approach for size and location optimization of distributed generation in distribution system," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(3), pages 339-349, June.
    5. Kadir Doğanşahin & Bedri Kekezoğlu & Recep Yumurtacı & Ozan Erdinç & João P. S. Catalão, 2018. "Maximum Permissible Integration Capacity of Renewable DG Units Based on System Loads," Energies, MDPI, vol. 11(1), pages 1-16, January.
    6. Hung, Duong Quoc & Mithulananthan, N. & Bansal, R.C., 2014. "An optimal investment planning framework for multiple distributed generation units in industrial distribution systems," Applied Energy, Elsevier, vol. 124(C), pages 62-72.
    7. Razavi, Seyed-Ehsan & Rahimi, Ehsan & Javadi, Mohammad Sadegh & Nezhad, Ali Esmaeel & Lotfi, Mohamed & Shafie-khah, Miadreza & Catalão, João P.S., 2019. "Impact of distributed generation on protection and voltage regulation of distribution systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 157-167.
    8. Monteiro, Raul V.A. & Guimarães, Geraldo C. & Silva, Fernando Bento & da Silva Teixeira, Raoni F. & Carvalho, Bismarck C. & Finazzi, Antônio de P. & de Vasconcellos, Arnulfo B., 2018. "A medium-term analysis of the reduction in technical losses on distribution systems with variable demand using artificial neural networks: An Electrical Energy Storage approach," Energy, Elsevier, vol. 164(C), pages 1216-1228.
    9. Sultana, U. & Khairuddin, Azhar B. & Aman, M.M. & Mokhtar, A.S. & Zareen, N., 2016. "A review of optimum DG placement based on minimization of power losses and voltage stability enhancement of distribution system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 363-378.
    10. Luo, Lizi & Gu, Wei & Zhang, Xiao-Ping & Cao, Ge & Wang, Weijun & Zhu, Gang & You, Dingjun & Wu, Zhi, 2018. "Optimal siting and sizing of distributed generation in distribution systems with PV solar farm utilized as STATCOM (PV-STATCOM)," Applied Energy, Elsevier, vol. 210(C), pages 1092-1100.
    11. Ji, Haoran & Wang, Chengshan & Li, Peng & Zhao, Jinli & Song, Guanyu & Wu, Jianzhong, 2018. "Quantified flexibility evaluation of soft open points to improve distributed generator penetration in active distribution networks based on difference-of-convex programming," Applied Energy, Elsevier, vol. 218(C), pages 338-348.
    12. Ehsan, Ali & Yang, Qiang, 2018. "Optimal integration and planning of renewable distributed generation in the power distribution networks: A review of analytical techniques," Applied Energy, Elsevier, vol. 210(C), pages 44-59.
    13. Emmanuel, Michael & Rayudu, Ramesh, 2017. "Evolution of dispatchable photovoltaic system integration with the electric power network for smart grid applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 207-224.
    14. Mahesh Kumar & Amir Mahmood Soomro & Waqar Uddin & Laveet Kumar, 2022. "Optimal Multi-Objective Placement and Sizing of Distributed Generation in Distribution System: A Comprehensive Review," Energies, MDPI, vol. 15(21), pages 1-48, October.
    15. Ahmadigorji, Masoud & Amjady, Nima, 2015. "Optimal dynamic expansion planning of distribution systems considering non-renewable distributed generation using a new heuristic double-stage optimization solution approach," Applied Energy, Elsevier, vol. 156(C), pages 655-665.
    16. Arun Onlam & Daranpob Yodphet & Rongrit Chatthaworn & Chayada Surawanitkun & Apirat Siritaratiwat & Pirat Khunkitti, 2019. "Power Loss Minimization and Voltage Stability Improvement in Electrical Distribution System via Network Reconfiguration and Distributed Generation Placement Using Novel Adaptive Shuffled Frogs Leaping," Energies, MDPI, vol. 12(3), pages 1-12, February.
    17. Lei Yang & Xiaohui Yang & Yue Wu & Xiaoping Liu, 2018. "Applied Research on Distributed Generation Optimal Allocation Based on Improved Estimation of Distribution Algorithm," Energies, MDPI, vol. 11(9), pages 1-17, September.
    18. Zeeshan Memon Anjum & Dalila Mat Said & Mohammad Yusri Hassan & Zohaib Hussain Leghari & Gul Sahar, 2022. "Parallel operated hybrid Arithmetic-Salp swarm optimizer for optimal allocation of multiple distributed generation units in distribution networks," PLOS ONE, Public Library of Science, vol. 17(4), pages 1-38, April.
    19. Alturki, Mansoor & Khodaei, Amin & Paaso, Aleksi & Bahramirad, Shay, 2018. "Optimization-based distribution grid hosting capacity calculations," Applied Energy, Elsevier, vol. 219(C), pages 350-360.
    20. Yaghoobi, Jalil & Islam, Monirul & Mithulananthan, Nadarajah, 2018. "Analytical approach to assess the loadability of unbalanced distribution grid with rooftop PV units," Applied Energy, Elsevier, vol. 211(C), pages 358-367.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1341-:d:748180. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.