IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i3p530-d204161.html
   My bibliography  Save this article

Seed Pretreatment for Increased Hydrogen Production Using Mixed-Culture Systems with Advantages over Pure-Culture Systems

Author

Listed:
  • Vinayak Laxman Pachapur

    (Institut National de la Recherche Scientifique, Centre—Eau Terre Environnement, 490, Rue de la Couronne, Québec, QC G1K 9A9, Canada
    Department of Civil Engineering and Water Engineering, Pavilion Adrien-Pouliot, Université Laval, 1065, avenue de la Médecine, Quebec, QC G1V 0A6, Canada)

  • Prianka Kutty

    (National Institute of Technology Warangal, Warangal 506004, India)

  • Preetika Pachapur

    (Institut National de la Recherche Scientifique, Centre—Eau Terre Environnement, 490, Rue de la Couronne, Québec, QC G1K 9A9, Canada)

  • Satinder Kaur Brar

    (Institut National de la Recherche Scientifique, Centre—Eau Terre Environnement, 490, Rue de la Couronne, Québec, QC G1K 9A9, Canada
    Department of Civil Engineering, Lassonde School of Engineering, York University, Toronto, ON M3J 1P3, Canada)

  • Yann Le Bihan

    (Centre de Recherche Industrielle du Québec (CRIQ), Québec, QC G1P 4C7, Canada)

  • Rosa Galvez-Cloutier

    (Department of Civil Engineering and Water Engineering, Pavilion Adrien-Pouliot, Université Laval, 1065, avenue de la Médecine, Quebec, QC G1V 0A6, Canada)

  • Gerardo Buelna

    (Centre de Recherche Industrielle du Québec (CRIQ), Québec, QC G1P 4C7, Canada)

Abstract

Hydrogen is an important source of energy and is considered as the future energy carrier post-petroleum era. Nowadays hydrogen production through various methods is being explored and developed to minimize the production costs. Biological hydrogen production has remained an attractive option, highly economical despite low yields. The mixed-culture systems use undefined microbial consortia unlike pure-cultures that use defined microbial species for hydrogen production. This review summarizes mixed-culture system pretreatments such as heat, chemical (acid, alkali), microwave, ultrasound, aeration, and electric current, amongst others, and their combinations to improve the hydrogen yields. The literature representation of pretreatments in mixed-culture systems is as follows: 45–50% heat-treatment, 15–20% chemical, 5–10% microwave, 10–15% combined and 10–15% other treatment. In comparison to pure-culture mixed-culture offers several advantages, such as technical feasibility, minimum inoculum steps, minimum media supplements, ease of operation, and the fact it works on a wide spectrum of low-cost easily available organic wastes for valorization in hydrogen production. In comparison to pure-culture, mixed-culture can eliminate media sterilization (4 h), incubation step (18–36 h), media supplements cost ($4–6 for bioconversion of 1 kg crude glycerol (CG)) and around 10–15 Millijoule (MJ) of energy can be decreased for the single run.

Suggested Citation

  • Vinayak Laxman Pachapur & Prianka Kutty & Preetika Pachapur & Satinder Kaur Brar & Yann Le Bihan & Rosa Galvez-Cloutier & Gerardo Buelna, 2019. "Seed Pretreatment for Increased Hydrogen Production Using Mixed-Culture Systems with Advantages over Pure-Culture Systems," Energies, MDPI, vol. 12(3), pages 1-26, February.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:530-:d:204161
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/3/530/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/3/530/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Julius Akinbomi & Mohammad J. Taherzadeh, 2015. "Evaluation of Fermentative Hydrogen Production from Single and Mixed Fruit Wastes," Energies, MDPI, vol. 8(5), pages 1-20, May.
    2. Asma Sattar & Chaudhry Arslan & Changying Ji & Sumiyya Sattar & Irshad Ali Mari & Haroon Rashid & Fariha Ilyas, 2016. "Comparing the Bio-Hydrogen Production Potential of Pretreated Rice Straw Co-Digested with Seeded Sludge Using an Anaerobic Bioreactor under Mesophilic Thermophilic Conditions," Energies, MDPI, vol. 9(3), pages 1-14, March.
    3. Wipa Prapinagsorn & Sureewan Sittijunda & Alissara Reungsang, 2017. "Co-Digestion of Napier Grass and Its Silage with Cow Dung for Methane Production," Energies, MDPI, vol. 10(10), pages 1-20, October.
    4. Mangayil, Rahul & Aho, Tommi & Karp, Matti & Santala, Ville, 2015. "Improved bioconversion of crude glycerol to hydrogen by statistical optimization of media components," Renewable Energy, Elsevier, vol. 75(C), pages 583-589.
    5. Bharathiraja, B. & Sudharsana, T. & Jayamuthunagai, J. & Praveenkumar, R. & Chozhavendhan, S. & Iyyappan, J., 2018. "Biogas production – A review on composition, fuel properties, feed stock and principles of anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 570-582.
    6. Hisham Hafez & George Nakhla & Hesham El Naggar, 2009. "Biological Hydrogen Production from Corn-Syrup Waste Using a Novel System," Energies, MDPI, vol. 2(2), pages 1-11, June.
    7. Alissara Reungsang & Chakkrit Sreela-or, 2013. "Bio-Hydrogen Production from Pineapple Waste Extract by Anaerobic Mixed Cultures," Energies, MDPI, vol. 6(4), pages 1-16, April.
    8. Wipa Prapinagsorn & Sureewan Sittijunda & Alissara Reungsang, 2017. "Co-Digestion of Napier Grass and Its Silage with Cow Dung for Bio-Hydrogen and Methane Production by Two-Stage Anaerobic Digestion Process," Energies, MDPI, vol. 11(1), pages 1-16, December.
    9. Appleton, T.J. & Colder, R.I. & Kingman, S.W. & Lowndes, I.S. & Read, A.G., 2005. "Microwave technology for energy-efficient processing of waste," Applied Energy, Elsevier, vol. 81(1), pages 85-113, May.
    10. Ravindran, Anita & Adav, Sunil & Yang, Shang-Shyng, 2010. "Effect of heat pre-treatment temperature on isolation of hydrogen producing functional consortium from soil," Renewable Energy, Elsevier, vol. 35(12), pages 2649-2655.
    11. Luo, Gang & Xie, Li & Zou, Zhonghai & Zhou, Qi & Wang, Jing-Yuan, 2010. "Fermentative hydrogen production from cassava stillage by mixed anaerobic microflora: Effects of temperature and pH," Applied Energy, Elsevier, vol. 87(12), pages 3710-3717, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weronika Cieciura-Włoch & Michał Binczarski & Jolanta Tomaszewska & Sebastian Borowski & Jarosław Domański & Piotr Dziugan & Izabela Witońska, 2019. "The Use of Acidic Hydrolysates after Furfural Production from Sugar Waste Biomass as a Fermentation Medium in the Biotechnological Production of Hydrogen," Energies, MDPI, vol. 12(17), pages 1-17, August.
    2. Alejandro Lyons Cerón & Alar Konist & Heidi Lees & Oliver Järvik, 2021. "Effect of Woody Biomass Gasification Process Conditions on the Composition of the Producer Gas," Sustainability, MDPI, vol. 13(21), pages 1-17, October.
    3. Domagoj Talapko & Jasminka Talapko & Ivan Erić & Ivana Škrlec, 2023. "Biological Hydrogen Production from Biowaste Using Dark Fermentation, Storage and Transportation," Energies, MDPI, vol. 16(8), pages 1-16, April.
    4. Carlos E. Gómez-Camacho & Bernardo Ruggeri, 2019. "Energy Sustainability Analysis (ESA) of Energy-Producing Processes: A Case Study on Distributed H 2 Production," Sustainability, MDPI, vol. 11(18), pages 1-23, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guoqiang Wang & Feng Wang & Bohong Chen, 2020. "Performance Study on Methanol Steam Reforming Rib Micro-Reactor with Waste Heat Recovery," Energies, MDPI, vol. 13(7), pages 1-18, March.
    2. Kotchakarn Nantasaksiri & Patcharawat Charoen-amornkitt & Takashi Machimura & Kiichiro Hayashi, 2021. "Multi-Disciplinary Assessment of Napier Grass Plantation on Local Energetic, Environmental and Socioeconomic Industries: A Watershed-Scale Study in Southern Thailand," Sustainability, MDPI, vol. 13(24), pages 1-18, December.
    3. Soltan, Mohamed & Elsamadony, Mohamed & Tawfik, Ahmed, 2017. "Biological hydrogen promotion via integrated fermentation of complex agro-industrial wastes," Applied Energy, Elsevier, vol. 185(P1), pages 929-938.
    4. Jiraprasertwong, Achiraya & Maitriwong, Kiatchai & Chavadej, Sumaeth, 2019. "Production of biogas from cassava wastewater using a three-stage upflow anaerobic sludge blanket (UASB) reactor," Renewable Energy, Elsevier, vol. 130(C), pages 191-205.
    5. Huang, Yu-Fong & Chiueh, Pei-Te & Kuan, Wen-Hui & Lo, Shang-Lien, 2016. "Microwave pyrolysis of lignocellulosic biomass: Heating performance and reaction kinetics," Energy, Elsevier, vol. 100(C), pages 137-144.
    6. Huang, Yu-Fong & Shih, Chun-Hao & Chiueh, Pei-Te & Lo, Shang-Lien, 2015. "Microwave co-pyrolysis of sewage sludge and rice straw," Energy, Elsevier, vol. 87(C), pages 638-644.
    7. Elena Tamburini & Mattias Gaglio & Giuseppe Castaldelli & Elisa Anna Fano, 2020. "Is Bioenergy Truly Sustainable When Land-Use-Change (LUC) Emissions Are Accounted for? The Case-Study of Biogas from Agricultural Biomass in Emilia-Romagna Region, Italy," Sustainability, MDPI, vol. 12(8), pages 1-20, April.
    8. Akroum-Amrouche, Dahbia & Abdi, Nadia & Lounici, Hakim & Mameri, Nabil, 2011. "Effect of physico-chemical parameters on biohydrogen production and growth characteristics by batch culture of Rhodobacter sphaeroides CIP 60.6," Applied Energy, Elsevier, vol. 88(6), pages 2130-2135, June.
    9. Wang, Yuanqing & Jin, Fangming & Zeng, Xu & Ma, Cuixiang & Wang, Fengwen & Yao, Guodong & Jing, Zhenzi, 2013. "Catalytic activity of Ni3S2 and effects of reactor wall in hydrogen production from water with hydrogen sulphide as a reducer under hydrothermal conditions," Applied Energy, Elsevier, vol. 104(C), pages 306-309.
    10. Azman, Nadia Farhana & Abdeshahian, Peyman & Kadier, Abudukeremu & Shukor, Hafiza & Al-Shorgani, Najeeb Kaid Nasser & Hamid, Aidil Abdul & Kalil, Mohd Sahaid, 2016. "Utilization of palm kernel cake as a renewable feedstock for fermentative hydrogen production," Renewable Energy, Elsevier, vol. 93(C), pages 700-708.
    11. Asma Sattar & Chaudhry Arslan & Changying Ji & Sumiyya Sattar & Irshad Ali Mari & Haroon Rashid & Fariha Ilyas, 2016. "Comparing the Bio-Hydrogen Production Potential of Pretreated Rice Straw Co-Digested with Seeded Sludge Using an Anaerobic Bioreactor under Mesophilic Thermophilic Conditions," Energies, MDPI, vol. 9(3), pages 1-14, March.
    12. Tyagi, Vinay Kumar & Lo, Shang-Lien, 2013. "Microwave irradiation: A sustainable way for sludge treatment and resource recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 288-305.
    13. Marek Cierpiał-Wolan & Bogdan Wierzbiński & Dariusz Twaróg, 2021. "The Use of the Local and Regional Potential in Building Energy Independence—Polish and Ukraine Case Study," Energies, MDPI, vol. 14(19), pages 1-21, September.
    14. Wang, Xiaoquan & Morrison, William & Du, Zhenyi & Wan, Yiqin & Lin, Xiangyang & Chen, Paul & Ruan, Roger, 2012. "Biomass temperature profile development and its implications under the microwave-assisted pyrolysis condition," Applied Energy, Elsevier, vol. 99(C), pages 386-392.
    15. Ndayisenga, Fabrice & Yu, Zhisheng & Zheng, Jianzhong & Wang, Bobo & Liang, Hongxia & Phulpoto, Irfan Ali & Habiyakare, Telesphore & Zhou, Dandan, 2021. "Microbial electrohydrogenesis cell and dark fermentation integrated system enhances biohydrogen production from lignocellulosic agricultural wastes: Substrate pretreatment towards optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    16. He, Quan (Sophia) & McNutt, Josiah & Yang, Jie, 2017. "Utilization of the residual glycerol from biodiesel production for renewable energy generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 63-76.
    17. Huang, Yu-Fong & Kuan, Wen-Hui & Chang, Chun-Yuan, 2018. "Effects of particle size, pretreatment, and catalysis on microwave pyrolysis of corn stover," Energy, Elsevier, vol. 143(C), pages 696-703.
    18. Bücker, Francielle & Marder, Munique & Peiter, Marina Regina & Lehn, Daniel Neutzling & Esquerdo, Vanessa Mendonça & Antonio de Almeida Pinto, Luiz & Konrad, Odorico, 2020. "Fish waste: An efficient alternative to biogas and methane production in an anaerobic mono-digestion system," Renewable Energy, Elsevier, vol. 147(P1), pages 798-805.
    19. Wenyao Jin & Xiaochen Xu & Fenglin Yang, 2018. "Application of Rumen Microorganisms for Enhancing Biogas Production of Corn Straw and Livestock Manure in a Pilot-Scale Anaerobic Digestion System: Performance and Microbial Community Analysis," Energies, MDPI, vol. 11(4), pages 1-17, April.
    20. Bhattacharya, Madhuchhanda & Basak, Tanmay, 2016. "A review on the susceptor assisted microwave processing of materials," Energy, Elsevier, vol. 97(C), pages 306-338.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:530-:d:204161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.