IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v35y2010i12p2649-2655.html
   My bibliography  Save this article

Effect of heat pre-treatment temperature on isolation of hydrogen producing functional consortium from soil

Author

Listed:
  • Ravindran, Anita
  • Adav, Sunil
  • Yang, Shang-Shyng

Abstract

A functional hydrogen producing consortium was isolated from soil by heat pre-treatment technique and hydrogen production at different substrate concentration was evaluated. The forest soil was heat pre-treated at 65, 80, 95, 105 and 120 °C temperature for 1 h. As revealed by PCR-DGGE analysis and hydrogen yield, the hydrogen producing microbial community changed with increase in heat pre-treatment temperatures giving potential hydrogen producing consortium at 95–105 °C soil pre-treatment. The maximum hydrogen production rate, hydrogen yield and cumulative hydrogen with 15–20 g glucose were 1390–1576 mL/L/day, 1.83–1.93 mol H2/mol glucose, and 2966–3146 mL H2/L, respectively. The metabolic pathways shifted from ethanol-type to acetate–formate type as soil pre-treatment temperature increased from 65 to 120 °C. The soil heat pre-treatment approach is effective for isolating hydrogen producing natural Clostridium consortium from the soil as enumerations of the functional strains need specific temperature range to florish.

Suggested Citation

  • Ravindran, Anita & Adav, Sunil & Yang, Shang-Shyng, 2010. "Effect of heat pre-treatment temperature on isolation of hydrogen producing functional consortium from soil," Renewable Energy, Elsevier, vol. 35(12), pages 2649-2655.
  • Handle: RePEc:eee:renene:v:35:y:2010:i:12:p:2649-2655
    DOI: 10.1016/j.renene.2010.04.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148110001771
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2010.04.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vinayak Laxman Pachapur & Prianka Kutty & Preetika Pachapur & Satinder Kaur Brar & Yann Le Bihan & Rosa Galvez-Cloutier & Gerardo Buelna, 2019. "Seed Pretreatment for Increased Hydrogen Production Using Mixed-Culture Systems with Advantages over Pure-Culture Systems," Energies, MDPI, vol. 12(3), pages 1-26, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:35:y:2010:i:12:p:2649-2655. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.