IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i2p253-d197907.html
   My bibliography  Save this article

Strength Behaviors of Remolded Hydrate-Bearing Marine Sediments in Different Drilling Depths of the South China Sea

Author

Listed:
  • Yanghui Li

    (Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, China)

  • Tingting Luo

    (Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, China)

  • Xiang Sun

    (Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, China)

  • Weiguo Liu

    (Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, China)

  • Qingping Li

    (China National Offshore Oil Corporation, Beijing 100010, China)

  • Yuanping Li

    (China National Offshore Oil Corporation, Shenzhen 518068, China)

  • Yongchen Song

    (Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, China)

Abstract

The mechanical behaviors of hydrate-bearing marine sediments (HBMS) drilled from the seafloor need to be understood in order to safely exploit natural gas from marine hydrate reservoirs. In this study, hydrates were prepared using ice powder and CH 4 gas, and HBMS from the Shenhu area in the South China Sea were remolded using a mixed sample preparation method. A series of triaxial tests were conducted on the remolded HBMS to investigate the effects of soil particle gradation and the existence of hydrate on the mechanical properties of hydrate reservoirs. The results show that the stiffness and failure strength of HBMS decrease along with the decrease of mean particle size and soil aggregate morphology change at different drilling depths, and the reduction of failure strength is more than 20% when the drilling depth drops by 30 m. A better particle gradation of marine sediments may boost the stiffness and failure strength of HBMS. In addition, the existence of hydrate plays an important role in the strength behaviors of HBMS. The reduction of failure strength of HBMS with 30% initial hydrate saturation is more than 35% after complete hydrate dissociation.

Suggested Citation

  • Yanghui Li & Tingting Luo & Xiang Sun & Weiguo Liu & Qingping Li & Yuanping Li & Yongchen Song, 2019. "Strength Behaviors of Remolded Hydrate-Bearing Marine Sediments in Different Drilling Depths of the South China Sea," Energies, MDPI, vol. 12(2), pages 1-14, January.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:2:p:253-:d:197907
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/2/253/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/2/253/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yanghui Li & Yongchen Song & Weiguo Liu & Feng Yu, 2012. "Experimental Research on the Mechanical Properties of Methane Hydrate-Ice Mixtures," Energies, MDPI, vol. 5(2), pages 1-12, January.
    2. Li, Yanghui & Liu, Weiguo & Zhu, Yiming & Chen, Yunfei & Song, Yongchen & Li, Qingping, 2016. "Mechanical behaviors of permafrost-associated methane hydrate-bearing sediments under different mining methods," Applied Energy, Elsevier, vol. 162(C), pages 1627-1632.
    3. Yang, Lei & Ai, Li & Xue, Kaihua & Ling, Zheng & Li, Yanghui, 2018. "Analyzing the effects of inhomogeneity on the permeability of porous media containing methane hydrates through pore network models combined with CT observation," Energy, Elsevier, vol. 163(C), pages 27-37.
    4. Wu, Zhaoran & Li, Yanghui & Sun, Xiang & Wu, Peng & Zheng, Jianan, 2018. "Experimental study on the effect of methane hydrate decomposition on gas phase permeability of clayey sediments," Applied Energy, Elsevier, vol. 230(C), pages 1304-1310.
    5. Pengfei Shen & Gang Li & Jiangfeng Liu & Xiaosen Li & Jinming Zhang, 2019. "Gas Permeability and Production Potential of Marine Hydrate Deposits in South China Sea," Energies, MDPI, vol. 12(21), pages 1-20, October.
    6. Kuniyuki Miyazaki & Norio Tenma & Kazuo Aoki & Tsutomu Yamaguchi, 2012. "A Nonlinear Elastic Model for Triaxial Compressive Properties of Artificial Methane-Hydrate-Bearing Sediment Samples," Energies, MDPI, vol. 5(10), pages 1-19, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luo, Tingting & Li, Yanghui & Madhusudhan, B.N. & Sun, Xiang & Song, Yongchen, 2020. "Deformation behaviors of hydrate-bearing silty sediment induced by depressurization and thermal recovery," Applied Energy, Elsevier, vol. 276(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xudong Zhang & Yiming Zhu & Zhanfeng Ying & Tingting Luo, 2019. "Experimental Investigation on the Dynamic Modulus Properties of Methane Hydrate Sediment Samples," Energies, MDPI, vol. 12(22), pages 1-14, November.
    2. Wu, Zhaoran & Liu, Weiguo & Zheng, Jianan & Li, Yanghui, 2020. "Effect of methane hydrate dissociation and reformation on the permeability of clayey sediments," Applied Energy, Elsevier, vol. 261(C).
    3. Fang Jin & Feng Huang & Guobiao Zhang & Bing Li & Jianguo Lv, 2023. "Experimental Investigation on Deformation and Permeability of Clayey–Silty Sediment during Hydrate Dissociation by Depressurization," Energies, MDPI, vol. 16(13), pages 1-15, June.
    4. Dongliang Li & Qi Wu & Zhe Wang & Jingsheng Lu & Deqing Liang & Xiaosen Li, 2018. "Tri-Axial Shear Tests on Hydrate-Bearing Sediments during Hydrate Dissociation with Depressurization," Energies, MDPI, vol. 11(7), pages 1-12, July.
    5. Guo, Zeyu & Fang, Qidong & Nong, Mingyan & Ren, Xingwei, 2021. "A novel Kozeny-Carman-based permeability model for hydrate-bearing sediments," Energy, Elsevier, vol. 234(C).
    6. Liu, Weiguo & Wu, Zhaoran & Li, Jiajie & Zheng, Jianan & Li, Yanghui, 2020. "The seepage characteristics of methane hydrate-bearing clayey sediments under various pressure gradients," Energy, Elsevier, vol. 191(C).
    7. Wang, Haijun & Wu, Peng & Li, Yanghui & Liu, Weiguo & Pan, Xuelian & Li, Qingping & He, Yufa & Song, Yongchen, 2023. "Gas permeability variation during methane hydrate dissociation by depressurization in marine sediments," Energy, Elsevier, vol. 263(PB).
    8. Jianchun Xu & Ziwei Bu & Hangyu Li & Xiaopu Wang & Shuyang Liu, 2022. "Permeability Models of Hydrate-Bearing Sediments: A Comprehensive Review with Focus on Normalized Permeability," Energies, MDPI, vol. 15(13), pages 1-65, June.
    9. Yuxuan Zhou & Shugang Li & Yang Bai & Hang Long & Yuchu Cai & Jingfei Zhang, 2023. "Joint Characterization and Fractal Laws of Pore Structure in Low-Rank Coal," Sustainability, MDPI, vol. 15(12), pages 1-19, June.
    10. Yan, Chuanliang & Li, Yang & Cheng, Yuanfang & Wei, Jia & Tian, Wanqing & Li, Shuxia & Wang, Zhiyuan, 2022. "Multifield coupling mechanism in formations around a wellbore during the exploitation of methane hydrate with CO2 replacement," Energy, Elsevier, vol. 245(C).
    11. Xuke Ruan & Yongchen Song & Jiafei Zhao & Haifeng Liang & Mingjun Yang & Yanghui Li, 2012. "Numerical Simulation of Methane Production from Hydrates Induced by Different Depressurizing Approaches," Energies, MDPI, vol. 5(2), pages 1-21, February.
    12. Chen, Chang & Zhang, Yu & Li, Xiaosen & Gao, Fei & Chen, Yuru & Chen, Zhaoyang, 2024. "Experimental investigation into gas production from methane hydrate in sediments with different contents of illite clay by depressurization," Energy, Elsevier, vol. 296(C).
    13. Yan, Min & Zhou, Ming & Li, Shugang & Lin, Haifei & Zhang, Kunyin & Zhang, Binbin & Shu, Chi-Min, 2021. "Numerical investigation on the influence of micropore structure characteristics on gas seepage in coal with lattice Boltzmann method," Energy, Elsevier, vol. 230(C).
    14. Wang, Xiaochu & Sun, Youhong & Li, Bing & Zhang, Guobiao & Guo, Wei & Li, Shengli & Jiang, Shuhui & Peng, Saiyu & Chen, Hangkai, 2023. "Reservoir stimulation of marine natural gas hydrate-a review," Energy, Elsevier, vol. 263(PE).
    15. Song, Yongchen & Yang, Lei & Zhao, Jiafei & Liu, Weiguo & Yang, Mingjun & Li, Yanghui & Liu, Yu & Li, Qingping, 2014. "The status of natural gas hydrate research in China: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 778-791.
    16. Huo, Jinhua & Zhang, Ruizhi & Yu, Baisong & Che, Yuanjun & Wu, Zhansheng & Zhang, Xing & Peng, Zhigang, 2022. "Preparation, characterization, investigation of phase change micro-encapsulated thermal control material used for energy storage and temperature regulation in deep-water oil and gas development," Energy, Elsevier, vol. 239(PD).
    17. Kou, Xuan & Li, Xiao-Sen & Wang, Yi & Liu, Jian-Wu & Chen, Zhao-Yang, 2021. "Effects of gas occurrence pattern on distribution and morphology characteristics of gas hydrates in porous media," Energy, Elsevier, vol. 226(C).
    18. Wang, Xiao & Pan, Lin & Lau, Hon Chung & Zhang, Ming & Li, Longlong & Zhou, Qiao, 2018. "Reservoir volume of gas hydrate stability zones in permafrost regions of China," Applied Energy, Elsevier, vol. 225(C), pages 486-500.
    19. Dongliang Li & Zhe Wang & Deqing Liang & Xiaoping Wu, 2019. "Effect of Clay Content on the Mechanical Properties of Hydrate-Bearing Sediments during Hydrate Production via Depressurization," Energies, MDPI, vol. 12(14), pages 1-14, July.
    20. Chen, Bingbing & Sun, Huiru & Zhou, Hang & Yang, Mingjun & Wang, Dayong, 2019. "Effects of pressure and sea water flow on natural gas hydrate production characteristics in marine sediment," Applied Energy, Elsevier, vol. 238(C), pages 274-283.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:2:p:253-:d:197907. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.