IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i22p4277-d285394.html
   My bibliography  Save this article

Experimental Investigation on the Dynamic Modulus Properties of Methane Hydrate Sediment Samples

Author

Listed:
  • Xudong Zhang

    (School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China)

  • Yiming Zhu

    (School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China)

  • Zhanfeng Ying

    (School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China)

  • Tingting Luo

    (Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, China)

Abstract

Studying the strength and deformation properties of sediments containing gas hydrates is one of the key problems during the process of hydrate resource exploitation. In this paper, considering the effects of temperatures (−5, −3, −1 °C), confining pressures (0.5, 1, 2 MPa) and porosities (40%, 80%) on the dynamic modulus characteristics of sediments containing methane hydrates, several dynamic loading experiments were conducted. The results show that the sediment structure was more easily destroyed under a larger amplitude of dynamic loading. According to the dynamic stress–strain curves, the skeleton curves of the sediment samples were obtained, and it was shown that the deformation behaved with elastic characteristics in the initial stage, and then plastic deformation increased gradually and played a leading role with the increase in external loading. The maximum dynamic elastic modulus of sediments was reduced under the conditions of higher temperature and porosity, and effectively enhanced under higher confining pressure. Finally, on the basis of the Hardin–Drnevich equivalent model, and considering the influences of temperatures and confining pressures on model parameters, a viscoelastic constitutive model applied to analyze the dynamic modulus characteristics of sediments containing methane hydrate was established. The comparison showed that these calculated values of sediments’ dynamic elastic modulus accorded quite well with the experimental values.

Suggested Citation

  • Xudong Zhang & Yiming Zhu & Zhanfeng Ying & Tingting Luo, 2019. "Experimental Investigation on the Dynamic Modulus Properties of Methane Hydrate Sediment Samples," Energies, MDPI, vol. 12(22), pages 1-14, November.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:22:p:4277-:d:285394
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/22/4277/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/22/4277/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yanghui Li & Yongchen Song & Weiguo Liu & Feng Yu, 2012. "Experimental Research on the Mechanical Properties of Methane Hydrate-Ice Mixtures," Energies, MDPI, vol. 5(2), pages 1-12, January.
    2. Li, Yanghui & Liu, Weiguo & Zhu, Yiming & Chen, Yunfei & Song, Yongchen & Li, Qingping, 2016. "Mechanical behaviors of permafrost-associated methane hydrate-bearing sediments under different mining methods," Applied Energy, Elsevier, vol. 162(C), pages 1627-1632.
    3. Yang, Lei & Ai, Li & Xue, Kaihua & Ling, Zheng & Li, Yanghui, 2018. "Analyzing the effects of inhomogeneity on the permeability of porous media containing methane hydrates through pore network models combined with CT observation," Energy, Elsevier, vol. 163(C), pages 27-37.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yanghui Li & Tingting Luo & Xiang Sun & Weiguo Liu & Qingping Li & Yuanping Li & Yongchen Song, 2019. "Strength Behaviors of Remolded Hydrate-Bearing Marine Sediments in Different Drilling Depths of the South China Sea," Energies, MDPI, vol. 12(2), pages 1-14, January.
    2. Yuxuan Zhou & Shugang Li & Yang Bai & Hang Long & Yuchu Cai & Jingfei Zhang, 2023. "Joint Characterization and Fractal Laws of Pore Structure in Low-Rank Coal," Sustainability, MDPI, vol. 15(12), pages 1-19, June.
    3. Yan, Chuanliang & Li, Yang & Cheng, Yuanfang & Wei, Jia & Tian, Wanqing & Li, Shuxia & Wang, Zhiyuan, 2022. "Multifield coupling mechanism in formations around a wellbore during the exploitation of methane hydrate with CO2 replacement," Energy, Elsevier, vol. 245(C).
    4. Xuke Ruan & Yongchen Song & Jiafei Zhao & Haifeng Liang & Mingjun Yang & Yanghui Li, 2012. "Numerical Simulation of Methane Production from Hydrates Induced by Different Depressurizing Approaches," Energies, MDPI, vol. 5(2), pages 1-21, February.
    5. Yan, Min & Zhou, Ming & Li, Shugang & Lin, Haifei & Zhang, Kunyin & Zhang, Binbin & Shu, Chi-Min, 2021. "Numerical investigation on the influence of micropore structure characteristics on gas seepage in coal with lattice Boltzmann method," Energy, Elsevier, vol. 230(C).
    6. Wu, Zhaoran & Liu, Weiguo & Zheng, Jianan & Li, Yanghui, 2020. "Effect of methane hydrate dissociation and reformation on the permeability of clayey sediments," Applied Energy, Elsevier, vol. 261(C).
    7. Song, Yongchen & Yang, Lei & Zhao, Jiafei & Liu, Weiguo & Yang, Mingjun & Li, Yanghui & Liu, Yu & Li, Qingping, 2014. "The status of natural gas hydrate research in China: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 778-791.
    8. Kou, Xuan & Li, Xiao-Sen & Wang, Yi & Liu, Jian-Wu & Chen, Zhao-Yang, 2021. "Effects of gas occurrence pattern on distribution and morphology characteristics of gas hydrates in porous media," Energy, Elsevier, vol. 226(C).
    9. Wang, Xiao & Pan, Lin & Lau, Hon Chung & Zhang, Ming & Li, Longlong & Zhou, Qiao, 2018. "Reservoir volume of gas hydrate stability zones in permafrost regions of China," Applied Energy, Elsevier, vol. 225(C), pages 486-500.
    10. Dongliang Li & Zhe Wang & Deqing Liang & Xiaoping Wu, 2019. "Effect of Clay Content on the Mechanical Properties of Hydrate-Bearing Sediments during Hydrate Production via Depressurization," Energies, MDPI, vol. 12(14), pages 1-14, July.
    11. Chen, Bingbing & Sun, Huiru & Zhou, Hang & Yang, Mingjun & Wang, Dayong, 2019. "Effects of pressure and sea water flow on natural gas hydrate production characteristics in marine sediment," Applied Energy, Elsevier, vol. 238(C), pages 274-283.
    12. Kou, Xuan & Li, Xiao-Sen & Wang, Yi & Liu, Jian-Wu & Chen, Zhao-Yang, 2021. "Heterogeneity of hydrate-bearing sediments: Definition and effects on fluid flow properties," Energy, Elsevier, vol. 229(C).
    13. Yanghui Li & Peng Wu & Xiang Sun & Weiguo Liu & Yongchen Song & Jiafei Zhao, 2019. "Creep Behaviors of Methane Hydrate-Bearing Frozen Sediments," Energies, MDPI, vol. 12(2), pages 1-17, January.
    14. Li, Gang & Wu, Dan-Mei & Li, Xiao-Sen & Lv, Qiu-Nan & Li, Chao & Zhang, Yu, 2017. "Experimental measurement and mathematical model of permeability with methane hydrate in quartz sands," Applied Energy, Elsevier, vol. 202(C), pages 282-292.
    15. Li, Xiao-Yan & Hu, Heng-Qi & Wang, Yi & Li, Xiao-Sen, 2022. "Experimental study of gas-liquid-sand production behaviors during gas hydrates dissociation with sand control screen," Energy, Elsevier, vol. 254(PB).
    16. Luo, Yongjiang & Sun, Yushi & Li, Lijia & Wang, Xing & Qin, Chaozhong & Liu, Lele & Liu, Changling & Wu, Dongyu, 2022. "Image-based pore-network modeling of two-phase flow in hydrate-bearing porous media," Energy, Elsevier, vol. 252(C).
    17. Wang, Xiao-Hui & Sun, Yi-Fei & Wang, Yun-Fei & Li, Nan & Sun, Chang-Yu & Chen, Guang-Jin & Liu, Bei & Yang, Lan-Ying, 2017. "Gas production from hydrates by CH4-CO2/H2 replacement," Applied Energy, Elsevier, vol. 188(C), pages 305-314.
    18. Zhou, Yan & Guan, Wei & Cong, Peichao & Sun, Qiji, 2022. "Effects of heterogeneous pore closure on the permeability of coal involving adsorption-induced swelling: A micro pore-scale simulation," Energy, Elsevier, vol. 258(C).
    19. Song, Rui & Liu, Jianjun & Yang, Chunhe & Sun, Shuyu, 2022. "Study on the multiphase heat and mass transfer mechanism in the dissociation of methane hydrate in reconstructed real-shape porous sediments," Energy, Elsevier, vol. 254(PC).
    20. Wei, Rupeng & Xia, Yongqiang & Wang, Zifei & Li, Qingping & Lv, Xin & Leng, Shudong & Zhang, Lunxiang & Zhang, Yi & Xiao, Bo & Yang, Shengxiong & Yang, Lei & Zhao, Jiafei & Song, Yongchen, 2022. "Long-term numerical simulation of a joint production of gas hydrate and underlying shallow gas through dual horizontal wells in the South China Sea," Applied Energy, Elsevier, vol. 320(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:22:p:4277-:d:285394. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.