IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v5y2012i10p4057-4075d20811.html
   My bibliography  Save this article

A Nonlinear Elastic Model for Triaxial Compressive Properties of Artificial Methane-Hydrate-Bearing Sediment Samples

Author

Listed:
  • Kuniyuki Miyazaki

    (Institute for Geo-Resources and Environment, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567 Japan)

  • Norio Tenma

    (Methane Hydrate Research Center, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569 Japan)

  • Kazuo Aoki

    (Methane Hydrate Research Center, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569 Japan)

  • Tsutomu Yamaguchi

    (Department of Environmental Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510 Japan)

Abstract

A constitutive model for marine sediments containing natural gas hydrate is essential for the simulation of the geomechanical response to gas extraction from a gas-hydrate reservoir. In this study, the triaxial compressive properties of artificial methane-hydrate-bearing sediment samples reported in an earlier work were analyzed to examine the applicability of a nonlinear elastic constitutive model based on the Duncan-Chang model. The presented model considered the dependences of the mechanical properties on methane hydrate saturation and effective confining pressure. Some parameters were decided depending on the type of sand forming a specimen. The behaviors of lateral strain versus axial strain were also formulated as a function of effective confining pressure. The constitutive model presented in this study will provide a basis for an elastic analysis of the geomechanical behaviors of the gas-hydrate reservoir in the future study, although it is currently available to a limited extent.

Suggested Citation

  • Kuniyuki Miyazaki & Norio Tenma & Kazuo Aoki & Tsutomu Yamaguchi, 2012. "A Nonlinear Elastic Model for Triaxial Compressive Properties of Artificial Methane-Hydrate-Bearing Sediment Samples," Energies, MDPI, vol. 5(10), pages 1-19, October.
  • Handle: RePEc:gam:jeners:v:5:y:2012:i:10:p:4057-4075:d:20811
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/5/10/4057/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/5/10/4057/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shmulik Pinkert, 2019. "Dilation Behavior of Gas-Saturated Methane-Hydrate Bearing Sand," Energies, MDPI, vol. 12(15), pages 1-14, July.
    2. Zhenhua Han & Luqing Zhang & Jian Zhou & Zhejun Pan & Song Wang & Ruirui Li, 2023. "Effect of Mineral Grain and Hydrate Layered Distribution Characteristics on the Mechanical Properties of Hydrate-Bearing Sediments," Energies, MDPI, vol. 16(21), pages 1-19, October.
    3. Bin Gong & Ruijie Ye & Ruiqi Zhang & Naser Golsanami & Yujing Jiang & Dingrui Guo & Sajjad Negahban, 2023. "The Failure Mechanism of Methane Hydrate-Bearing Specimen Based on Energy Analysis Using Discrete Element Method," Sustainability, MDPI, vol. 15(2), pages 1-21, January.
    4. Liu, Weiguo & Song, Qi & Wu, Peng & Liu, Tao & Huang, Lei & Zhang, Shuheng & Li, Yanghui, 2023. "Triaxial tests on anisotropic consolidated methane hydrate-bearing clayey-silty sediments of the South China Sea," Energy, Elsevier, vol. 284(C).
    5. Fang Jin & Feng Huang & Guobiao Zhang & Bing Li & Jianguo Lv, 2023. "Experimental Investigation on Deformation and Permeability of Clayey–Silty Sediment during Hydrate Dissociation by Depressurization," Energies, MDPI, vol. 16(13), pages 1-15, June.
    6. Yanghui Li & Tingting Luo & Xiang Sun & Weiguo Liu & Qingping Li & Yuanping Li & Yongchen Song, 2019. "Strength Behaviors of Remolded Hydrate-Bearing Marine Sediments in Different Drilling Depths of the South China Sea," Energies, MDPI, vol. 12(2), pages 1-14, January.
    7. Dongliang Li & Qi Wu & Zhe Wang & Jingsheng Lu & Deqing Liang & Xiaosen Li, 2018. "Tri-Axial Shear Tests on Hydrate-Bearing Sediments during Hydrate Dissociation with Depressurization," Energies, MDPI, vol. 11(7), pages 1-12, July.
    8. Du, Hua & Chen, Huie & Kong, Fansheng & Luo, Yonggui, 2023. "Failure mode and the mechanism of methane hydrate-bearing clayey sand sediments under depressurization," Energy, Elsevier, vol. 279(C).
    9. Wang, Yi & Kou, Xuan & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu, 2020. "Sediment deformation and strain evaluation during methane hydrate dissociation in a novel experimental apparatus," Applied Energy, Elsevier, vol. 262(C).
    10. Kuniyuki Miyazaki & Norio Tenma & Tsutomu Yamaguchi, 2017. "Relationship between Creep Property and Loading-Rate Dependence of Strength of Artificial Methane-Hydrate-Bearing Toyoura Sand under Triaxial Compression," Energies, MDPI, vol. 10(10), pages 1-15, September.
    11. Chen, Huie & Du, Hua & Shi, Bin & Shan, Wenchong & Hou, Jiaqi, 2022. "Mechanical properties and strength criterion of clayey sand reservoirs during natural gas hydrate extraction," Energy, Elsevier, vol. 242(C).
    12. Choi, Wonjung & Mok, Junghoon & Lee, Jonghyuk & Lee, Yohan & Lee, Jaehyoung & Sum, Amadeu K. & Seo, Yongwon, 2022. "Effective CH4 production and novel CO2 storage through depressurization-assisted replacement in natural gas hydrate-bearing sediment," Applied Energy, Elsevier, vol. 326(C).
    13. Leizhen Wang & Guorong Wang, 2020. "Experimental and Theoretical Study on the Critical Breaking Velocity of Marine Natural Gas Hydrate Sediments Breaking by Water Jet," Energies, MDPI, vol. 13(7), pages 1-11, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:5:y:2012:i:10:p:4057-4075:d:20811. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.