IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i24p4683-d295914.html
   My bibliography  Save this article

A Control-Oriented Engine Torque Online Estimation Approach for Gasoline Engines Based on In-Cycle Crankshaft Speed Dynamics

Author

Listed:
  • Qiang Tong

    (State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China)

  • Hui Xie

    (State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China)

  • Kang Song

    (State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China)

  • Dong Zou

    (State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China)

Abstract

Engine brake torque is a key feedback variable for the optimal torque split control of an engine–motor hybrid powertrain system. Due to the limitations in available sensors, however, engine torque is difficult to measure directly. For torque estimation, the unknown external load torque and the overlap of the expansion stroke between cylinders introduce a great disturbance to engine speed dynamics. This makes the conventional cycle average engine speed-based estimation approach unusable. In this article, an in-cycle crankshaft speed-based indicated torque estimation approach is proposed for a four-cylinder engine. First, a unique crankshaft angle window is selected for load torque estimation without the influence of combustion torque. Then, an in-cycle angle-domain crankshaft speed dynamic model is developed for engine indicated torque estimation. To account for the effects of model inaccuracy and unknown external disturbances, a “total disturbance” term is introduced. The total disturbance is then estimated by an adaptive observer using the engine’s historical operating data. Finally, a real-time correction method for the friction torque is proposed in the fuel cut-off scenario. Combining the aforementioned torque estimators, the brake torque can be obtained. The proposed algorithm is implemented in an in-house developed multi-core engine control unit (ECU). Experimental validation results on an engine test bench show that the algorithm’s execution time is about 3.2 ms, and the estimation error of the brake torque is within 5%. Therefore, the proposed method is a promising way to accurately estimate engine torque in real-time.

Suggested Citation

  • Qiang Tong & Hui Xie & Kang Song & Dong Zou, 2019. "A Control-Oriented Engine Torque Online Estimation Approach for Gasoline Engines Based on In-Cycle Crankshaft Speed Dynamics," Energies, MDPI, vol. 12(24), pages 1-23, December.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:24:p:4683-:d:295914
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/24/4683/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/24/4683/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, Chao & Du, Siyu & Li, Liang & You, Sixong & Yang, Yiyong & Zhao, Yue, 2017. "Adaptive real-time optimal energy management strategy based on equivalent factors optimization for plug-in hybrid electric vehicle," Applied Energy, Elsevier, vol. 203(C), pages 883-896.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Dehua & Liu, Sheng & Cai, Yingfeng & Wang, Shaohua & Li, Haoran & Chen, Long, 2021. "Pontryagin’s minimum principle based fuzzy adaptive energy management for hybrid electric vehicle using real-time traffic information," Applied Energy, Elsevier, vol. 286(C).
    2. Guo, Hongqiang & Sun, Qun & Wang, Chong & Wang, Qinpu & Lu, Silong, 2018. "A systematic design and optimization method of transmission system and power management for a plug-in hybrid electric vehicle," Energy, Elsevier, vol. 148(C), pages 1006-1017.
    3. Hou, Daizheng & Sun, Qun & Bao, Chunjiang & Cheng, Xingqun & Guo, Hongqiang & Zhao, Ying, 2019. "An all-in-one design method for plug-in hybrid electric buses considering uncertain factor of driving cycles," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    4. Yu, Qing & Li, Weifeng & Zhang, Haoran & Chen, Jinyu, 2022. "GPS data in taxi-sharing system: Analysis of potential demand and assessment of fuel consumption based on routing probability model," Applied Energy, Elsevier, vol. 314(C).
    5. Yang, Chao & Liu, Kaijia & Jiao, Xiaohong & Wang, Weida & Chen, Ruihu & You, Sixiong, 2022. "An adaptive firework algorithm optimization-based intelligent energy management strategy for plug-in hybrid electric vehicles," Energy, Elsevier, vol. 239(PB).
    6. Yang, Chao & Wang, Muyao & Wang, Weida & Pu, Zesong & Ma, Mingyue, 2021. "An efficient vehicle-following predictive energy management strategy for PHEV based on improved sequential quadratic programming algorithm," Energy, Elsevier, vol. 219(C).
    7. Xie, Shaobo & Hu, Xiaosong & Qi, Shanwei & Lang, Kun, 2018. "An artificial neural network-enhanced energy management strategy for plug-in hybrid electric vehicles," Energy, Elsevier, vol. 163(C), pages 837-848.
    8. Pengxiang Song & Wenchuan Song & Ao Meng & Hongxue Li, 2024. "Adaptive Equivalent Factor-Based Energy Management Strategy for Plug-In Hybrid Electric Buses Considering Passenger Load Variations," Energies, MDPI, vol. 17(6), pages 1-30, March.
    9. Du, Jiuyu & Zhang, Xiaobin & Wang, Tianze & Song, Ziyou & Yang, Xueqing & Wang, Hewu & Ouyang, Minggao & Wu, Xiaogang, 2018. "Battery degradation minimization oriented energy management strategy for plug-in hybrid electric bus with multi-energy storage system," Energy, Elsevier, vol. 165(PA), pages 153-163.
    10. Chen, Zheng & Gu, Hongji & Shen, Shiquan & Shen, Jiangwei, 2022. "Energy management strategy for power-split plug-in hybrid electric vehicle based on MPC and double Q-learning," Energy, Elsevier, vol. 245(C).
    11. Shi, Man & He, Hongwen & Li, Jianwei & Han, Mo & Jia, Chunchun, 2021. "Multi-objective tradeoff optimization of predictive adaptive cruising control for autonomous electric buses: A cyber-physical-energy system approach," Applied Energy, Elsevier, vol. 300(C).
    12. Wang, Shaohua & Zhang, Kaimei & Shi, Dehua & Li, Meng & Yin, Chunfang, 2024. "Research on economical shifting strategy for multi-gear and multi-mode parallel plug-in HEV based on DIRECT algorithm," Energy, Elsevier, vol. 286(C).
    13. Ye Yang & Youtong Zhang & Jingyi Tian & Si Zhang, 2018. "Research on a Plug-In Hybrid Electric Bus Energy Management Strategy Considering Drivability," Energies, MDPI, vol. 11(8), pages 1-22, August.
    14. Sven Schulze & Günter Feyerl & Stefan Pischinger, 2023. "Advanced ECMS for Hybrid Electric Heavy-Duty Trucks with Predictive Battery Discharge and Adaptive Operating Strategy under Real Driving Conditions," Energies, MDPI, vol. 16(13), pages 1-29, July.
    15. Cong Ji & Elkhatib Kamal & Reza Ghorbani, 2024. "Reliable Energy Optimization Strategy for Fuel Cell Hybrid Electric Vehicles Considering Fuel Cell and Battery Health," Energies, MDPI, vol. 17(18), pages 1-26, September.
    16. Tian, Xiang & Cai, Yingfeng & Sun, Xiaodong & Zhu, Zhen & Xu, Yiqiang, 2019. "An adaptive ECMS with driving style recognition for energy optimization of parallel hybrid electric buses," Energy, Elsevier, vol. 189(C).
    17. Fu, Zhengtang & Dong, Peiwu & Ju, Yanbing & Gan, Zhenkun & Zhu, Min, 2022. "An intelligent green vehicle management system for urban food reliably delivery:A case study of Shanghai, China," Energy, Elsevier, vol. 257(C).
    18. Anselma, Pier Giuseppe & Kollmeyer, Phillip & Lempert, Jeremy & Zhao, Ziyu & Belingardi, Giovanni & Emadi, Ali, 2021. "Battery state-of-health sensitive energy management of hybrid electric vehicles: Lifetime prediction and ageing experimental validation," Applied Energy, Elsevier, vol. 285(C).
    19. Lu Han & Xiaohong Jiao & Zhao Zhang, 2020. "Recurrent Neural Network-Based Adaptive Energy Management Control Strategy of Plug-In Hybrid Electric Vehicles Considering Battery Aging," Energies, MDPI, vol. 13(1), pages 1-22, January.
    20. Zhang, Shuo & Hu, Xiaosong & Xie, Shaobo & Song, Ziyou & Hu, Lin & Hou, Cong, 2019. "Adaptively coordinated optimization of battery aging and energy management in plug-in hybrid electric buses," Applied Energy, Elsevier, vol. 256(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:24:p:4683-:d:295914. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.