IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i24p4673-d295677.html
   My bibliography  Save this article

Optimal Design of PMSM Based on Automated Finite Element Analysis and Metamodeling

Author

Listed:
  • Yong-Min You

    (Department of Automotive Engineering, Honam University, Gwangju 62399, Korea)

Abstract

To obtain accurate optimal design results in electric machines, the finite element analysis (FEA) technique should be used; however, it is time-consuming. In addition, when the design of experiments (DOE) is conducted in the optimal design process, mechanical design, analysis, and post process must be performed for each design point, which requires a significant amount of design cost and time. This study proposes an automated DOE procedure through linkage between an FEA program and optimal design program to perform DOE easily and accurately. Parametric modeling was developed for the FEA model for automation, the files required for automation were generated using the macro function, and the interface between the FEA and optimal design program was established. Shape optimization was performed on permanent magnet synchronous motors (PMSMs) for small electric vehicles to maximize torque while maintaining efficiency, torque ripple, and total harmonic distortion of the back EMF using the built-in automation program. Fifty FEAs were performed for the experimental points selected by optimal Latin hypercube design and their results were analyzed by screening. Eleven metamodels were created for each output variable using the DOE results and root mean squared error tests were conducted to evaluate the predictive performance of the metamodels. The optimization design based on metamodels was conducted using the hybrid metaheuristic algorithm to determine the global optimum. The optimum design results showed that the average torque was improved by 2.5% in comparison to the initial model, while satisfying all constraints. Finally, the optimal design results were verified by FEA. Consequently, it was found that the proposed optimal design method can be useful for improving the performance of PMSM as well as reducing design cost and time.

Suggested Citation

  • Yong-Min You, 2019. "Optimal Design of PMSM Based on Automated Finite Element Analysis and Metamodeling," Energies, MDPI, vol. 12(24), pages 1-18, December.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:24:p:4673-:d:295677
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/24/4673/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/24/4673/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yukai Li & Baowei Song & Zhaoyong Mao & Wenlong Tian, 2018. "Analysis and Optimization of the Electromagnetic Performance of a Novel Stator Modular Ring Drive Thruster Motor," Energies, MDPI, vol. 11(6), pages 1-23, June.
    2. Jung-Woo Kwon & Jin-hee Lee & Wenliang Zhao & Byung-Il Kwon, 2018. "Flux-Switching Permanent Magnet Machine with Phase-Group Concentrated-Coil Windings and Cogging Torque Reduction Technique," Energies, MDPI, vol. 11(10), pages 1-11, October.
    3. Baoshou Zhang & Baowei Song & Zhaoyong Mao & Wenlong Tian & Boyang Li & Bo Li, 2017. "A Novel Parametric Modeling Method and Optimal Design for Savonius Wind Turbines," Energies, MDPI, vol. 10(3), pages 1-20, March.
    4. Wenping Chai & Thomas A. Lipo & Byung-il Kwon, 2018. "Design and Optimization of a Novel Wound Field Synchronous Machine for Torque Performance Enhancement," Energies, MDPI, vol. 11(8), pages 1-15, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Duc Tan Vu & Ngac Ky Nguyen & Eric Semail & Hailong Wu, 2021. "Adaline-Based Control Schemes for Non-Sinusoidal Multiphase Drives–Part I: Torque Optimization for Healthy Mode," Energies, MDPI, vol. 14(24), pages 1-22, December.
    2. Hanaa Elsherbiny & Laszlo Szamel & Mohamed Kamal Ahmed & Mahmoud A. Elwany, 2022. "High Accuracy Modeling of Permanent Magnet Synchronous Motors Using Finite Element Analysis," Mathematics, MDPI, vol. 10(20), pages 1-20, October.
    3. Catalin Petrea Ion & Marius Daniel Calin & Ioan Peter, 2023. "Design of a 3 kW PMSM with Super Premium Efficiency," Energies, MDPI, vol. 16(1), pages 1-11, January.
    4. Jean-Michel Grenier & Ramón Pérez & Mathieu Picard & Jérôme Cros, 2021. "Magnetic FEA Direct Optimization of High-Power Density, Halbach Array Permanent Magnet Electric Motors," Energies, MDPI, vol. 14(18), pages 1-19, September.
    5. Sunghun Kim & Youngjin Park & Seungbeom Yoo & Sejun Lee & Uttam Kumar Chanda & Wonjun Cho & Ocktaeck Lim, 2023. "Optimization of the Uniformity Index Performance in the Selective Catalytic Reduction System Using a Metamodel," Sustainability, MDPI, vol. 15(18), pages 1-16, September.
    6. Lukáš Veg & Jan Kaska & Martin Skalický & Roman Pechánek, 2021. "A Complex Study of Stator Tooth-Coil Winding Thermal Models for PM Synchronous Motors Used in Electric Vehicle Applications," Energies, MDPI, vol. 14(9), pages 1-16, April.
    7. Armin Dietz & Antonino Oscar Di Tommaso & Fabrizio Marignetti & Rosario Miceli & Claudio Nevoloso, 2020. "Enhanced Flexible Algorithm for the Optimization of Slot Filling Factors in Electrical Machines," Energies, MDPI, vol. 13(5), pages 1-21, February.
    8. Duc Tan Vu & Ngac Ky Nguyen & Eric Semail & Hailong Wu, 2021. "Adaline-Based Control Schemes for Non-Sinusoidal Multiphase Drives—Part II: Torque Optimization for Faulty Mode," Energies, MDPI, vol. 15(1), pages 1-21, December.
    9. Kan Wang & Zhong Wu & Zhongyi Chu, 2020. "DC-Link Current Control with Inverter Nonlinearity Compensation for Permanent Magnet Synchronous Motor Drives," Energies, MDPI, vol. 13(3), pages 1-16, January.
    10. Sunghun Kim & Youngjin Park & Seungbeom Yoo & Ocktaeck Lim & Bernike Febriana Samosir, 2023. "Development of Machine Learning Algorithms for Application in Major Performance Enhancement in the Selective Catalytic Reduction (SCR) System," Sustainability, MDPI, vol. 15(9), pages 1-20, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marco A. Moreno-Armendáriz & Eddy Ibarra-Ontiveros & Hiram Calvo & Carlos A. Duchanoy, 2021. "Integrated Surrogate Optimization of a Vertical Axis Wind Turbine," Energies, MDPI, vol. 15(1), pages 1-21, December.
    2. Selvin Raj, Jaya Antony Perinba & Asirvatham, Lazarus Godson & Angeline, Appadurai Anitha & Manova, Stephen & Rakshith, Bairi Levi & Bose, Jefferson Raja & Mahian, Omid & Wongwises, Somchai, 2024. "Thermal management strategies and power ratings of electric vehicle motors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    3. Shuangshuang Guo & Bo Zhao & Cunshan Zhang & Binglin Lu & Yukang Chu & Peng Yang, 2022. "Research on a Limit Analytical Method for a Low-Speed Micro Permanent Magnet Torque Motor with Back Winding," Energies, MDPI, vol. 15(13), pages 1-20, June.
    4. Jan Michna & Krzysztof Rogowski, 2022. "CFD Calculations of Average Flow Parameters around the Rotor of a Savonius Wind Turbine," Energies, MDPI, vol. 16(1), pages 1-17, December.
    5. Salleh, Mohd Badrul & Kamaruddin, Noorfazreena M. & Mohamed-Kassim, Zulfaa, 2022. "Experimental investigation on the effects of deflector angles on the power performance of a Savonius turbine for hydrokinetic applications in small rivers," Energy, Elsevier, vol. 247(C).
    6. Guo, Fen & Song, Baowei & Mao, Zhaoyong & Tian, Wenlong, 2020. "Experimental and numerical validation of the influence on Savonius turbine caused by rear deflector," Energy, Elsevier, vol. 196(C).
    7. Marinić-Kragić, Ivo & Vučina, Damir & Milas, Zoran, 2022. "Global optimization of Savonius-type vertical axis wind turbine with multiple circular-arc blades using validated 3D CFD model," Energy, Elsevier, vol. 241(C).
    8. Luke Sakamoto & Tomohiro Fukui & Koji Morinishi, 2022. "Blade Dimension Optimization and Performance Analysis of the 2-D Ugrinsky Wind Turbine," Energies, MDPI, vol. 15(7), pages 1-14, March.
    9. Ma, Chao & Wang, Dingbiao & Song, Lei & Wang, Weiguang & Wang, Guanghui, 2024. "Experimental and three-dimensional performance analysis of a bio-inspired fish-ridge vertical axis wind rotor," Energy, Elsevier, vol. 305(C).
    10. Muhammad Ramiz Zakir & Junaid Ikram & Saleem Iqbal Shah & Syed Sabir Hussain Bukhari & Salman Ali & Fabrizio Marignetti, 2022. "Performance Improvement of Axial Flux Permanent Magnet Machine with Phase Group Concentrated Coil Winding," Energies, MDPI, vol. 15(19), pages 1-22, October.
    11. Chaelim Jeong & Dongho Lee & Jin Hur, 2019. "Mitigation Method of Slot Harmonic Cogging Torque Considering Unevenly Magnetized Permanent Magnets in PMSM," Energies, MDPI, vol. 12(20), pages 1-15, October.
    12. Peng Wang & Daorina Bao & Mingzhi Zhao & Zhongyu Shi & Fan Gao & Feng Han, 2023. "The Design, Analysis, and Optimization of a New Pitch Mechanism for Small Wind Turbines," Energies, MDPI, vol. 16(18), pages 1-25, September.
    13. C M, Shashikumar & Madav, Vasudeva, 2021. "Numerical and experimental investigation of modified V-shaped turbine blades for hydrokinetic energy generation," Renewable Energy, Elsevier, vol. 177(C), pages 1170-1197.
    14. Fanel Dorel Scheaua, 2020. "Comparative Numerical Analysis on Vertical Wind Turbine Rotor Pattern of Bach and Benesh Type," Energies, MDPI, vol. 13(9), pages 1-20, May.
    15. Zhang, Baoshou & Li, Boyang & Li, Canpeng & Zhang, Yongbo & Lv, Jingze & Yu, Haidong, 2024. "Effects of submergence depth on the performance of the savonius hydrokinetic turbine near a free surface," Energy, Elsevier, vol. 289(C).
    16. Joon-Hyoung Ryu & June-Hee Lee & June-Seok Lee, 2020. "Switching Frequency Determination of SiC-Inverter for High Efficiency Propulsion System of Railway Vehicle," Energies, MDPI, vol. 13(19), pages 1-14, September.
    17. Krzysztof Sobczak & Damian Obidowski & Piotr Reorowicz & Emil Marchewka, 2020. "Numerical Investigations of the Savonius Turbine with Deformable Blades," Energies, MDPI, vol. 13(14), pages 1-20, July.
    18. Marinić-Kragić, Ivo & Vučina, Damir & Milas, Zoran, 2019. "Concept of flexible vertical-axis wind turbine with numerical simulation and shape optimization," Energy, Elsevier, vol. 167(C), pages 841-852.
    19. Scheaua Fanel Dorel & Goanta Adrian Mihai & Dragan Nicusor, 2021. "Review of Specific Performance Parameters of Vertical Wind Turbine Rotors Based on the SAVONIUS Type," Energies, MDPI, vol. 14(7), pages 1-23, April.
    20. Sunghun Kim & Youngjin Park & Seungbeom Yoo & Sejun Lee & Uttam Kumar Chanda & Wonjun Cho & Ocktaeck Lim, 2023. "Optimization of the Uniformity Index Performance in the Selective Catalytic Reduction System Using a Metamodel," Sustainability, MDPI, vol. 15(18), pages 1-16, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:24:p:4673-:d:295677. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.