IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i5p1041-d325432.html
   My bibliography  Save this article

Enhanced Flexible Algorithm for the Optimization of Slot Filling Factors in Electrical Machines

Author

Listed:
  • Armin Dietz

    (Technische Hochschule Nürnberg, Institut ELSYS, 90489 Nuremberg, Germany)

  • Antonino Oscar Di Tommaso

    (Dipartimento di Ingegneria, University of Palermo, viale delle Scienze, Parco d’Orleans, 90128 Palermo, Italy)

  • Fabrizio Marignetti

    (Department of electrical and Information Engineering (DIEI), University of Cassino and South Lazio, via. G. Di Biasio, 43, 03043 Cassino, Italy)

  • Rosario Miceli

    (Dipartimento di Ingegneria, University of Palermo, viale delle Scienze, Parco d’Orleans, 90128 Palermo, Italy)

  • Claudio Nevoloso

    (Dipartimento di Ingegneria, University of Palermo, viale delle Scienze, Parco d’Orleans, 90128 Palermo, Italy)

Abstract

The continuous development in the field of industrial automation and electric mobility has led to the need for more efficient electrical machines with a high power density. The improvement of electrical machines’ slot filling factors is one of the measures to satisfy these requirements. In recent years, this topic has aroused greater interest in the industrial sector, since the evolution of the winding technological manufacturing processes allows an economically sustainable realization of ordered winding arrangements, rather than random ones. Moreover, the manufacture of electrical machines’ windings must be preceded by an accurate design phase in which it is possible to evaluate the maximum slot filling factor obtainable for a given wire shape and for its dimensions. For this purpose, this paper presents an algorithmic approach for the evaluation of maximum slot filling factors in electrical machines under an ideal geometric premise. In particular, this algorithm has a greater degree of flexibility with respect to the algorithm approaches found in the literature, since the study has been extended to round, rectangular and hexagonal wire sections. Furthermore, the slot filling factor calculation was carried out both for standard and non-standard slots. The algorithmic approach proposed can be considered as an additional useful tool for the fast design of electrical machine windings.

Suggested Citation

  • Armin Dietz & Antonino Oscar Di Tommaso & Fabrizio Marignetti & Rosario Miceli & Claudio Nevoloso, 2020. "Enhanced Flexible Algorithm for the Optimization of Slot Filling Factors in Electrical Machines," Energies, MDPI, vol. 13(5), pages 1-21, February.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:5:p:1041-:d:325432
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/5/1041/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/5/1041/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Massimo Caruso & Antonino Oscar Di Tommaso & Fabrizio Marignetti & Rosario Miceli & Giuseppe Ricco Galluzzo, 2018. "A General Mathematical Formulation for Winding Layout Arrangement of Electrical Machines," Energies, MDPI, vol. 11(2), pages 1-24, February.
    2. Yong-Min You, 2019. "Optimal Design of PMSM Based on Automated Finite Element Analysis and Metamodeling," Energies, MDPI, vol. 12(24), pages 1-18, December.
    3. Ambra Torreggiani & Claudio Bianchini & Matteo Davoli & Alberto Bellini, 2019. "Design for Reliability: The Case of Fractional-Slot Surface Permanent-Magnet Machines," Energies, MDPI, vol. 12(9), pages 1-18, May.
    4. Luming Cheng & Yi Sui & Ping Zheng & Zuosheng Yin & Chuanze Wang, 2018. "Influence of Stator MMF Harmonics on the Utilization of Reluctance Torque in Six-Phase PMA-SynRM with FSCW," Energies, MDPI, vol. 11(1), pages 1-17, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ziqiang Zhu & Shensheng Wang & Bo Shao & Luocheng Yan & Peilin Xu & Yuan Ren, 2021. "Advances in Dual-Three-Phase Permanent Magnet Synchronous Machines and Control Techniques," Energies, MDPI, vol. 14(22), pages 1-46, November.
    2. Sunghun Kim & Youngjin Park & Seungbeom Yoo & Ocktaeck Lim & Bernike Febriana Samosir, 2023. "Development of Machine Learning Algorithms for Application in Major Performance Enhancement in the Selective Catalytic Reduction (SCR) System," Sustainability, MDPI, vol. 15(9), pages 1-20, April.
    3. Hoyun Won & Yang-Ki Hong & Minyeong Choi & Jonathan Platt & Briana Bryant & Seungdeog Choi & Shuhui Li & Hwan-Sik Yoon & Timothy A. Haskew & Jongkook Lee & Taegyu Lee & Tae-Won Lim, 2022. "Novel Design of Six-Phase Spoke-Type Ferrite Permanent Magnet Motor for Electric Truck Application," Energies, MDPI, vol. 15(6), pages 1-21, March.
    4. Zhenyang Qiao & Dongdong Jiang & Weinong Fu, 2023. "A Universal Parametric Modeling Framework for Electric Machine Design," Energies, MDPI, vol. 16(16), pages 1-13, August.
    5. Duc Tan Vu & Ngac Ky Nguyen & Eric Semail & Hailong Wu, 2021. "Adaline-Based Control Schemes for Non-Sinusoidal Multiphase Drives–Part I: Torque Optimization for Healthy Mode," Energies, MDPI, vol. 14(24), pages 1-22, December.
    6. Hanaa Elsherbiny & Laszlo Szamel & Mohamed Kamal Ahmed & Mahmoud A. Elwany, 2022. "High Accuracy Modeling of Permanent Magnet Synchronous Motors Using Finite Element Analysis," Mathematics, MDPI, vol. 10(20), pages 1-20, October.
    7. Massimo Caruso & Antonino Oscar Di Tommaso & Fabrizio Marignetti & Rosario Miceli, 2020. "A General Investigation on the Differential Leakage Factor for Symmetrical and Asymmetrical Multiphase Winding Design," Energies, MDPI, vol. 13(20), pages 1-13, October.
    8. Akilu Yunusa-Kaltungo & Ruifeng Cao, 2020. "Towards Developing an Automated Faults Characterisation Framework for Rotating Machines. Part 1: Rotor-Related Faults," Energies, MDPI, vol. 13(6), pages 1-20, March.
    9. Lukáš Veg & Jan Kaska & Martin Skalický & Roman Pechánek, 2021. "A Complex Study of Stator Tooth-Coil Winding Thermal Models for PM Synchronous Motors Used in Electric Vehicle Applications," Energies, MDPI, vol. 14(9), pages 1-16, April.
    10. Kan Wang & Zhong Wu & Zhongyi Chu, 2020. "DC-Link Current Control with Inverter Nonlinearity Compensation for Permanent Magnet Synchronous Motor Drives," Energies, MDPI, vol. 13(3), pages 1-16, January.
    11. Massimo Caruso & Antonino Oscar Di Tommaso & Rosario Miceli & Fabio Viola, 2022. "A Cogging Torque Minimization Procedure for Interior Permanent Magnet Synchronous Motors Based on a Progressive Modification of the Rotor Lamination Geometry," Energies, MDPI, vol. 15(14), pages 1-19, July.
    12. Catalin Petrea Ion & Marius Daniel Calin & Ioan Peter, 2023. "Design of a 3 kW PMSM with Super Premium Efficiency," Energies, MDPI, vol. 16(1), pages 1-11, January.
    13. Jean-Michel Grenier & Ramón Pérez & Mathieu Picard & Jérôme Cros, 2021. "Magnetic FEA Direct Optimization of High-Power Density, Halbach Array Permanent Magnet Electric Motors," Energies, MDPI, vol. 14(18), pages 1-19, September.
    14. Duc Tan Vu & Ngac Ky Nguyen & Eric Semail & Hailong Wu, 2021. "Adaline-Based Control Schemes for Non-Sinusoidal Multiphase Drives—Part II: Torque Optimization for Faulty Mode," Energies, MDPI, vol. 15(1), pages 1-21, December.
    15. Sunghun Kim & Youngjin Park & Seungbeom Yoo & Sejun Lee & Uttam Kumar Chanda & Wonjun Cho & Ocktaeck Lim, 2023. "Optimization of the Uniformity Index Performance in the Selective Catalytic Reduction System Using a Metamodel," Sustainability, MDPI, vol. 15(18), pages 1-16, September.
    16. Elia Brescia & Donatello Costantino & Paolo Roberto Massenio & Vito Giuseppe Monopoli & Francesco Cupertino & Giuseppe Leonardo Cascella, 2021. "A Design Method for the Cogging Torque Minimization of Permanent Magnet Machines with a Segmented Stator Core Based on ANN Surrogate Models," Energies, MDPI, vol. 14(7), pages 1-26, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:5:p:1041-:d:325432. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.