IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v241y2022ics0360544221030905.html
   My bibliography  Save this article

Global optimization of Savonius-type vertical axis wind turbine with multiple circular-arc blades using validated 3D CFD model

Author

Listed:
  • Marinić-Kragić, Ivo
  • Vučina, Damir
  • Milas, Zoran

Abstract

Vertical-axis wind turbines, such as Savonius-type wind turbines (SWT) are an attractive choice for small-scale electricity generation. Recent SWT research is mostly targeted at improving the SWT power coefficient, which is also the topic of this paper. The power coefficient was improved by optimization of a multi-blade SWT (2, 4 and 6), with blades based on circular arc segments. Additional optimization variables were the tip-speed ratio and the aspect ratio. The main novelty of this paper is the global optimization using genetic algorithm, which involved analysis of many different designs (∼105) using a validated 3D CFD model with a 4eq SST turbulence model. Since many designs were investigated, the optimization result is considered as the global optimal solution. In the 4 and 6-blade cases, the global optimal solution was similar to the previously proposed Scooplet-based design. The design was improved to achieve power coefficient cP = 0.32 with aspect ratio 1.5, and additionally cP = 0.34 with an increased aspect ratio of 2.5. Optimized designs were compared with a similar multiple quarter-blade design known from previous research (which was outperformed by 60%). For the 2-blade case a novel design was reached, which operates at TSR = 1.2, and achieves a 12% improvement over the classical SWT.

Suggested Citation

  • Marinić-Kragić, Ivo & Vučina, Damir & Milas, Zoran, 2022. "Global optimization of Savonius-type vertical axis wind turbine with multiple circular-arc blades using validated 3D CFD model," Energy, Elsevier, vol. 241(C).
  • Handle: RePEc:eee:energy:v:241:y:2022:i:c:s0360544221030905
    DOI: 10.1016/j.energy.2021.122841
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221030905
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122841?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kacprzak, Konrad & Liskiewicz, Grzegorz & Sobczak, Krzysztof, 2013. "Numerical investigation of conventional and modified Savonius wind turbines," Renewable Energy, Elsevier, vol. 60(C), pages 578-585.
    2. Rezaeiha, Abdolrahim & Montazeri, Hamid & Blocken, Bert, 2019. "On the accuracy of turbulence models for CFD simulations of vertical axis wind turbines," Energy, Elsevier, vol. 180(C), pages 838-857.
    3. Fanel Dorel Scheaua, 2020. "Comparative Numerical Analysis on Vertical Wind Turbine Rotor Pattern of Bach and Benesh Type," Energies, MDPI, vol. 13(9), pages 1-20, May.
    4. Roy, Sukanta & Saha, Ujjwal K., 2015. "Wind tunnel experiments of a newly developed two-bladed Savonius-style wind turbine," Applied Energy, Elsevier, vol. 137(C), pages 117-125.
    5. Baoshou Zhang & Baowei Song & Zhaoyong Mao & Wenlong Tian & Boyang Li & Bo Li, 2017. "A Novel Parametric Modeling Method and Optimal Design for Savonius Wind Turbines," Energies, MDPI, vol. 10(3), pages 1-20, March.
    6. Ferrari, G. & Federici, D. & Schito, P. & Inzoli, F. & Mereu, R., 2017. "CFD study of Savonius wind turbine: 3D model validation and parametric analysis," Renewable Energy, Elsevier, vol. 105(C), pages 722-734.
    7. Marinić-Kragić, Ivo & Vučina, Damir & Milas, Zoran, 2018. "Numerical workflow for 3D shape optimization and synthesis of vertical-axis wind turbines for specified operating regimes," Renewable Energy, Elsevier, vol. 115(C), pages 113-127.
    8. Kamoji, M.A. & Kedare, S.B. & Prabhu, S.V., 2009. "Experimental investigations on single stage modified Savonius rotor," Applied Energy, Elsevier, vol. 86(7-8), pages 1064-1073, July.
    9. Islam, Mazharul & Ting, David S.-K. & Fartaj, Amir, 2008. "Aerodynamic models for Darrieus-type straight-bladed vertical axis wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(4), pages 1087-1109, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jan Michna & Krzysztof Rogowski, 2022. "CFD Calculations of Average Flow Parameters around the Rotor of a Savonius Wind Turbine," Energies, MDPI, vol. 16(1), pages 1-17, December.
    2. Hu, Wenyu & E, Jiaqiang & Tan, Yan & Zhang, Feng & Liao, Gaoliang, 2022. "Modified wind energy collection devices for harvesting convective wind energy from cars and trucks moving in the highway," Energy, Elsevier, vol. 247(C).
    3. Chen, Yunrui & Guo, Penghua & Zhang, Dayu & Chai, Kaixin & Zhao, Chenxi & Li, Jingyin, 2022. "Power improvement of a cluster of three Savonius wind turbines using the variable-speed control method," Renewable Energy, Elsevier, vol. 193(C), pages 832-842.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Scheaua Fanel Dorel & Goanta Adrian Mihai & Dragan Nicusor, 2021. "Review of Specific Performance Parameters of Vertical Wind Turbine Rotors Based on the SAVONIUS Type," Energies, MDPI, vol. 14(7), pages 1-23, April.
    2. C M, Shashikumar & Madav, Vasudeva, 2021. "Numerical and experimental investigation of modified V-shaped turbine blades for hydrokinetic energy generation," Renewable Energy, Elsevier, vol. 177(C), pages 1170-1197.
    3. Noman, Abdullah Al & Tasneem, Zinat & Sahed, Md. Fahad & Muyeen, S.M. & Das, Sajal K. & Alam, Firoz, 2022. "Towards next generation Savonius wind turbine: Artificial intelligence in blade design trends and framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    4. Guo, Fen & Song, Baowei & Mao, Zhaoyong & Tian, Wenlong, 2020. "Experimental and numerical validation of the influence on Savonius turbine caused by rear deflector," Energy, Elsevier, vol. 196(C).
    5. Marinić-Kragić, Ivo & Vučina, Damir & Milas, Zoran, 2022. "Robust optimization of Savonius-type wind turbine deflector blades considering wind direction sensitivity and production material decrease," Renewable Energy, Elsevier, vol. 192(C), pages 150-163.
    6. Krzysztof Sobczak & Damian Obidowski & Piotr Reorowicz & Emil Marchewka, 2020. "Numerical Investigations of the Savonius Turbine with Deformable Blades," Energies, MDPI, vol. 13(14), pages 1-20, July.
    7. Marinić-Kragić, Ivo & Vučina, Damir & Milas, Zoran, 2019. "Concept of flexible vertical-axis wind turbine with numerical simulation and shape optimization," Energy, Elsevier, vol. 167(C), pages 841-852.
    8. Jan Michna & Krzysztof Rogowski, 2022. "CFD Calculations of Average Flow Parameters around the Rotor of a Savonius Wind Turbine," Energies, MDPI, vol. 16(1), pages 1-17, December.
    9. Fanel Dorel Scheaua, 2020. "Comparative Numerical Analysis on Vertical Wind Turbine Rotor Pattern of Bach and Benesh Type," Energies, MDPI, vol. 13(9), pages 1-20, May.
    10. Ricci, Renato & Romagnoli, Roberto & Montelpare, Sergio & Vitali, Daniele, 2016. "Experimental study on a Savonius wind rotor for street lighting systems," Applied Energy, Elsevier, vol. 161(C), pages 143-152.
    11. Mohammadi, M. & Lakestani, M. & Mohamed, M.H., 2018. "Intelligent parameter optimization of Savonius rotor using Artificial Neural Network and Genetic Algorithm," Energy, Elsevier, vol. 143(C), pages 56-68.
    12. Longo, Riccardo & Nicastro, Patricia & Natalini, Matteo & Schito, Paolo & Mereu, Riccardo & Parente, Alessandro, 2020. "Impact of urban environment on Savonius wind turbine performance: A numerical perspective," Renewable Energy, Elsevier, vol. 156(C), pages 407-422.
    13. Kai Lv & Yudong Xie & Xinbiao Zhang & Yong Wang, 2020. "Development of Savonius Rotors Integrated into Control Valves for Energy Harvesting," Sustainability, MDPI, vol. 12(20), pages 1-19, October.
    14. Tahani, Mojtaba & Rabbani, Ali & Kasaeian, Alibakhsh & Mehrpooya, Mehdi & Mirhosseini, Mojtaba, 2017. "Design and numerical investigation of Savonius wind turbine with discharge flow directing capability," Energy, Elsevier, vol. 130(C), pages 327-338.
    15. Kumar, Rakesh & Raahemifar, Kaamran & Fung, Alan S., 2018. "A critical review of vertical axis wind turbines for urban applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 281-291.
    16. Kumar, Anuj & Saini, R.P., 2016. "Performance parameters of Savonius type hydrokinetic turbine – A Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 289-310.
    17. Luis A. Gallo & Edwin L. Chica & Elkin G. Flórez, 2022. "Numerical Optimization of the Blade Profile of a Savonius Type Rotor Using the Response Surface Methodology," Sustainability, MDPI, vol. 14(9), pages 1-18, May.
    18. Chan, C.M. & Bai, H.L. & He, D.Q., 2018. "Blade shape optimization of the Savonius wind turbine using a genetic algorithm," Applied Energy, Elsevier, vol. 213(C), pages 148-157.
    19. Cuevas-Carvajal, N. & Cortes-Ramirez, J.S. & Norato, Julian A. & Hernandez, C. & Montoya-Vallejo, M.F., 2022. "Effect of geometrical parameters on the performance of conventional Savonius VAWT: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    20. Elbatran, A.H. & Ahmed, Yasser M. & Shehata, Ahmed S., 2017. "Performance study of ducted nozzle Savonius water turbine, comparison with conventional Savonius turbine," Energy, Elsevier, vol. 134(C), pages 566-584.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:241:y:2022:i:c:s0360544221030905. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.