IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i23p4584-d293173.html
   My bibliography  Save this article

Study on Operating Strategy of Electric–Gas Combined System Considering the Improvement of Dispatchability

Author

Listed:
  • Wei Zhang

    (Department of Electrical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China)

  • Ruoyao Liu

    (Department of Electrical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China)

  • Xinyu Yang

    (Department of Electrical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China)

Abstract

The uncertainty of distributed energy (DG) and load in the electric–gas combined system (EGCS) requires EGCS to have higher dispatching capacity. A novel strategy is introduced in this paper to operate EGCS considering dispatchability evaluation indexes in order to improve the dispatchability of EGCS. Firstly, the paper describes the physical architecture of EGCS and its main devices. Based on the typical structure of EGCS, the main coupling modes between the two networks are analyzed and summarized, and a power flow model of deep coupling EGCS is established. Then, it proposes a unified quantitative modeling method of dispatchability, and qualitatively analyzes the dispatchability capability of different types of resources in the system through the definition, connotation, and multi-dimensional attributes of EGCS dispatchability. In order to characterize the strength of the overall dispatchability of EGCS, two evaluation indexes, upward/downward dispatchability margin, are proposed. The case study validates the applicability of the proposed dispatchability indexes through simulation. The uncertainties existing in various sources, namely networks and loads of EGCS, the output power of wind farms, and photovoltaic plants, are analyzed emphatically through actual data of a certain area. The EGCS economic dispatching model is established by considering the DG output prediction errors, introducing the expected penalty term of insufficient dispatchability into the objective function, and calculating the dispatchability margin through the simulation model to quantitatively analyze the dispatchability capability of the system.

Suggested Citation

  • Wei Zhang & Ruoyao Liu & Xinyu Yang, 2019. "Study on Operating Strategy of Electric–Gas Combined System Considering the Improvement of Dispatchability," Energies, MDPI, vol. 12(23), pages 1-24, December.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:23:p:4584-:d:293173
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/23/4584/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/23/4584/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Faria, Pedro & Soares, Tiago & Vale, Zita & Morais, Hugo, 2014. "Distributed generation and demand response dispatch for a virtual power player energy and reserve provision," Renewable Energy, Elsevier, vol. 66(C), pages 686-695.
    2. Jiang, Yibo & Xu, Jian & Sun, Yuanzhang & Wei, Congying & Wang, Jing & Ke, Deping & Li, Xiong & Yang, Jun & Peng, Xiaotao & Tang, Bowen, 2017. "Day-ahead stochastic economic dispatch of wind integrated power system considering demand response of residential hybrid energy system," Applied Energy, Elsevier, vol. 190(C), pages 1126-1137.
    3. Wei, Zhinong & Chen, Sheng & Sun, Guoqiang & Wang, Dan & Sun, Yonghui & Zang, Haixiang, 2016. "Probabilistic available transfer capability calculation considering static security constraints and uncertainties of electricity–gas integrated energy systems," Applied Energy, Elsevier, vol. 167(C), pages 305-316.
    4. Zhang, Menglin & Ai, Xiaomeng & Fang, Jiakun & Yao, Wei & Zuo, Wenping & Chen, Zhe & Wen, Jinyu, 2018. "A systematic approach for the joint dispatch of energy and reserve incorporating demand response," Applied Energy, Elsevier, vol. 230(C), pages 1279-1291.
    5. Ondeck, Abigail D. & Edgar, Thomas F. & Baldea, Michael, 2015. "Optimal operation of a residential district-level combined photovoltaic/natural gas power and cooling system," Applied Energy, Elsevier, vol. 156(C), pages 593-606.
    6. Xu, Xiandong & Jin, Xiaolong & Jia, Hongjie & Yu, Xiaodan & Li, Kang, 2015. "Hierarchical management for integrated community energy systems," Applied Energy, Elsevier, vol. 160(C), pages 231-243.
    7. Sahin, Cem & Shahidehpour, Mohammad & Erkmen, Ismet, 2012. "Generation risk assessment in volatile conditions with wind, hydro, and natural gas units," Applied Energy, Elsevier, vol. 96(C), pages 4-11.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiandong Duan & Fan Liu & Yao Yang & Zhuanting Jin, 2021. "Flexible Dispatch for Integrated Power and Gas Systems Considering Power-to-Gas and Demand Response," Energies, MDPI, vol. 14(17), pages 1-26, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Menglin & Ai, Xiaomeng & Fang, Jiakun & Yao, Wei & Zuo, Wenping & Chen, Zhe & Wen, Jinyu, 2018. "A systematic approach for the joint dispatch of energy and reserve incorporating demand response," Applied Energy, Elsevier, vol. 230(C), pages 1279-1291.
    2. Hou, Lingxi & Li, Weiqi & Zhou, Kui & Jiang, Qirong, 2019. "Integrating flexible demand response toward available transfer capability enhancement," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    3. Wang, Yi & Zhang, Ning & Zhuo, Zhenyu & Kang, Chongqing & Kirschen, Daniel, 2018. "Mixed-integer linear programming-based optimal configuration planning for energy hub: Starting from scratch," Applied Energy, Elsevier, vol. 210(C), pages 1141-1150.
    4. Anvari-Moghaddam, Amjad & Rahimi-Kian, Ashkan & Mirian, Maryam S. & Guerrero, Josep M., 2017. "A multi-agent based energy management solution for integrated buildings and microgrid system," Applied Energy, Elsevier, vol. 203(C), pages 41-56.
    5. Zhang, Menglin & Wu, Qiuwei & Wen, Jinyu & Pan, Bo & Qi, Shiqiang, 2020. "Two-stage stochastic optimal operation of integrated electricity and heat system considering reserve of flexible devices and spatial-temporal correlation of wind power," Applied Energy, Elsevier, vol. 275(C).
    6. Deetjen, Thomas A. & Vitter, J. Scott & Reimers, Andrew S. & Webber, Michael E., 2018. "Optimal dispatch and equipment sizing of a residential central utility plant for improving rooftop solar integration," Energy, Elsevier, vol. 147(C), pages 1044-1059.
    7. Esmaeili Aliabadi, Danial & Kaya, Murat & Sahin, Guvenc, 2017. "Competition, risk and learning in electricity markets: An agent-based simulation study," Applied Energy, Elsevier, vol. 195(C), pages 1000-1011.
    8. Bhowmik, Chiranjib & Bhowmik, Sumit & Ray, Amitava & Pandey, Krishna Murari, 2017. "Optimal green energy planning for sustainable development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 796-813.
    9. Reda, Francesco & Viot, Maxime & Sipilä, Kari & Helm, Martin, 2016. "Energy assessment of solar cooling thermally driven system configurations for an office building in a Nordic country," Applied Energy, Elsevier, vol. 166(C), pages 27-43.
    10. Motalleb, Mahdi & Thornton, Matsu & Reihani, Ehsan & Ghorbani, Reza, 2016. "A nascent market for contingency reserve services using demand response," Applied Energy, Elsevier, vol. 179(C), pages 985-995.
    11. Valerie Eveloy & Dereje S. Ayou, 2019. "Sustainable District Cooling Systems: Status, Challenges, and Future Opportunities, with Emphasis on Cooling-Dominated Regions," Energies, MDPI, vol. 12(2), pages 1-64, January.
    12. Beigvand, Soheil Derafshi & Abdi, Hamdi & La Scala, Massimo, 2017. "A general model for energy hub economic dispatch," Applied Energy, Elsevier, vol. 190(C), pages 1090-1111.
    13. Khan, Muhammad T. & Thopil, George Alex & Lalk, Jorg, 2016. "Review of proposals for practical power sector restructuring and reforms in a dynamic electricity supply industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 326-335.
    14. Kong, Xiangyu & Sun, Fangyuan & Huo, Xianxu & Li, Xue & Shen, Yu, 2020. "Hierarchical optimal scheduling method of heat-electricity integrated energy system based on Power Internet of Things," Energy, Elsevier, vol. 210(C).
    15. Chen, Cong & Sun, Hongbin & Shen, Xinwei & Guo, Ye & Guo, Qinglai & Xia, Tian, 2019. "Two-stage robust planning-operation co-optimization of energy hub considering precise energy storage economic model," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    16. Cole, Wesley & Lewis, Haley & Sigrin, Ben & Margolis, Robert, 2016. "Interactions of rooftop PV deployment with the capacity expansion of the bulk power system," Applied Energy, Elsevier, vol. 168(C), pages 473-481.
    17. Fan, Zhi-Ping & Cai, Siqin & Guo, Dongliang & Xu, Bo, 2022. "Facing the uncertainty of renewable energy production: Production decisions of a power plant with different risk attitudes," Renewable Energy, Elsevier, vol. 199(C), pages 1237-1247.
    18. Hou, Langbo & Tong, Xi & Chen, Heng & Fan, Lanxin & Liu, Tao & Liu, Wenyi & Liu, Tong, 2024. "Optimized scheduling of smart community energy systems considering demand response and shared energy storage," Energy, Elsevier, vol. 295(C).
    19. Mohammad Hemmati & Mehdi Abapour & Behnam Mohammadi-Ivatloo & Amjad Anvari-Moghaddam, 2020. "Optimal Operation of Integrated Electrical and Natural Gas Networks with a Focus on Distributed Energy Hub Systems," Sustainability, MDPI, vol. 12(20), pages 1-22, October.
    20. Jin, Xiaolong & Mu, Yunfei & Jia, Hongjie & Wu, Jianzhong & Xu, Xiandong & Yu, Xiaodan, 2016. "Optimal day-ahead scheduling of integrated urban energy systems," Applied Energy, Elsevier, vol. 180(C), pages 1-13.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:23:p:4584-:d:293173. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.