IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i22p4379-d288037.html
   My bibliography  Save this article

New Fast MPPT Method Based on a Power Slope Detector for Single Phase PV Inverters

Author

Listed:
  • Jose Miguel Espi

    (Department of Electrical Engineering, University of Valencia, Avd. Universitat S/N, 46100 Burjassot-Valencia, Spain)

  • Jaime Castello

    (Department of Electrical Engineering, University of Valencia, Avd. Universitat S/N, 46100 Burjassot-Valencia, Spain)

Abstract

This article presents a novel MPPT method for two stage PV inverters with a single phase connection to the power grid. The method takes advantage of the 100 Hz/120 Hz harmonic present on the DC-bus voltage to guide the MPP search. It consists of detecting the slope of the P-V curve and integrating it to obtain the duty-cycle. The power slope detector (PSD) is able to calculate the P-V slope to command the MPPT even at very low powers, where the amplitude of the oscillations is barely perceptible. Design equations are provided, both of the gain of the PSD and of the gain of the MPPT integrator. It also shows how this PSD-MPPT strategy can be combined with the power control, allowing regulation of powers lower than those of the MPP. The power control loop is analyzed, and its stability is related to a single gain to be designed. The PSD-MPPT is tested in a two stage PV inverter, where the step-up DC-DC converter consists of three parallel boost converters. The results show that the PSD-MPPT method can work without the measurement of the current in the boost converters, which implies a cost reduction. A PV efficiency of about 99.8% is obtained with a usual ripple in the DC-bus of 4% peak-peak. In addition, the PSD-MPPT method is characterized as being extremely fast, both in the MPP search and in the power control, with response times around 50 ms. The PSD-MPPT is a simple algorithm of constant parameters that can be solved in a low cost microcontroller at a sampling frequency of about 2 kHz, requiring only the voltage and current of the PV array.

Suggested Citation

  • Jose Miguel Espi & Jaime Castello, 2019. "New Fast MPPT Method Based on a Power Slope Detector for Single Phase PV Inverters," Energies, MDPI, vol. 12(22), pages 1-20, November.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:22:p:4379-:d:288037
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/22/4379/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/22/4379/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chendi Li & Yuanrui Chen & Dongbao Zhou & Junfeng Liu & Jun Zeng, 2016. "A High-Performance Adaptive Incremental Conductance MPPT Algorithm for Photovoltaic Systems," Energies, MDPI, vol. 9(4), pages 1-17, April.
    2. Raúl González-Medina & Marian Liberos & Silvia Marzal & Emilio Figueres & Gabriel Garcerá, 2019. "A Control Scheme without Sensors at the PV Source for Cost and Size Reduction in Two-Stage Grid Connected Inverters," Energies, MDPI, vol. 12(15), pages 1-21, August.
    3. John Macaulay & Zhongfu Zhou, 2018. "A Fuzzy Logical-Based Variable Step Size P&O MPPT Algorithm for Photovoltaic System," Energies, MDPI, vol. 11(6), pages 1-15, May.
    4. Jose Miguel Espi & Jaime Castello, 2019. "A Novel Fast MPPT Strategy for High Efficiency PV Battery Chargers," Energies, MDPI, vol. 12(6), pages 1-16, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tomasz Binkowski & Marek Nowak & Stanisław Piróg, 2022. "Power Supply and Reactive Power Compensation of a Single-Phase Higher Frequency On-Board Grid with Photovoltaic Inverter," Energies, MDPI, vol. 15(7), pages 1-16, April.
    2. Kai-Hung Lu & Qianlin Rao, 2023. "Enhancing the Dynamic Stability of Integrated Offshore Wind Farms and Photovoltaic Farms Using STATCOM with Intelligent Damping Controllers," Sustainability, MDPI, vol. 15(18), pages 1-21, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eneko Artetxe & Jokin Uralde & Oscar Barambones & Isidro Calvo & Imanol Martin, 2023. "Maximum Power Point Tracker Controller for Solar Photovoltaic Based on Reinforcement Learning Agent with a Digital Twin," Mathematics, MDPI, vol. 11(9), pages 1-21, May.
    2. Marco Balato & Carlo Petrarca, 2020. "The Impact of Reconfiguration on the Energy Performance of the Distributed Maximum Power Point Tracking Approach in PV Plants," Energies, MDPI, vol. 13(6), pages 1-19, March.
    3. Jose Miguel Espi & Jaime Castello, 2019. "A Novel Fast MPPT Strategy for High Efficiency PV Battery Chargers," Energies, MDPI, vol. 12(6), pages 1-16, March.
    4. Ehsan Norouzzadeh & Ahmad Ale Ahmad & Meysam Saeedian & Gholamreza Eini & Edris Pouresmaeil, 2019. "Design and Implementation of a New Algorithm for Enhancing MPPT Performance in Solar Cells," Energies, MDPI, vol. 12(3), pages 1-17, February.
    5. Kostas Bavarinos & Anastasios Dounis & Panagiotis Kofinas, 2021. "Maximum Power Point Tracking Based on Reinforcement Learning Using Evolutionary Optimization Algorithms," Energies, MDPI, vol. 14(2), pages 1-23, January.
    6. Kuei-Hsiang Chao & Meng-Cheng Wu, 2016. "Global Maximum Power Point Tracking (MPPT) of a Photovoltaic Module Array Constructed through Improved Teaching-Learning-Based Optimization," Energies, MDPI, vol. 9(12), pages 1-18, November.
    7. Mehmet Ali Yildirim & Marzena Nowak-Ocłoń, 2020. "Modified Maximum Power Point Tracking Algorithm under Time-Varying Solar Irradiation," Energies, MDPI, vol. 13(24), pages 1-15, December.
    8. Eyal Amer & Alon Kuperman & Teuvo Suntio, 2019. "Direct Fixed-Step Maximum Power Point Tracking Algorithms with Adaptive Perturbation Frequency," Energies, MDPI, vol. 12(3), pages 1-16, January.
    9. Syed Zulqadar Hassan & Hui Li & Tariq Kamal & Uğur Arifoğlu & Sidra Mumtaz & Laiq Khan, 2017. "Neuro-Fuzzy Wavelet Based Adaptive MPPT Algorithm for Photovoltaic Systems," Energies, MDPI, vol. 10(3), pages 1-16, March.
    10. Khosravi, N. & Abdolmohammadi, H.R. & Bagheri, S. & Miveh, M.R., 2021. "Improvement of harmonic conditions in the AC/DC microgrids with the presence of filter compensation modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    11. Naoufel Zitouni & Rabiaa Gammoudi & Rim Attafi & Dhafer Mezgahni, 2023. "Developed and Intelligent Structure of a Control for PV Water Treatment System," Energies, MDPI, vol. 16(18), pages 1-30, September.
    12. Mohamed Louzazni & Daniel Tudor Cotfas & Petru Adrian Cotfas, 2020. "Management and Performance Control Analysis of Hybrid Photovoltaic Energy Storage System under Variable Solar Irradiation," Energies, MDPI, vol. 13(12), pages 1-23, June.
    13. Ming-Fa Tsai & Chung-Shi Tseng & Kuo-Tung Hung & Shih-Hua Lin, 2021. "A Novel DSP-Based MPPT Control Design for Photovoltaic Systems Using Neural Network Compensator," Energies, MDPI, vol. 14(11), pages 1-20, June.
    14. Grażyna Frydrychowicz-Jastrzębska & Artur Bugała, 2021. "Solar Tracking System with New Hybrid Control in Energy Production Optimization from Photovoltaic Conversion for Polish Climatic Conditions," Energies, MDPI, vol. 14(10), pages 1-26, May.
    15. Lan Li & Hao Wang & Xiangping Chen & Abid Ali Shah Bukhari & Wenping Cao & Lun Chai & Bing Li, 2019. "High Efficiency Solar Power Generation with Improved Discontinuous Pulse Width Modulation (DPWM) Overmodulation Algorithms," Energies, MDPI, vol. 12(9), pages 1-18, May.
    16. Mohamed Derbeli & Cristian Napole & Oscar Barambones & Jesus Sanchez & Isidro Calvo & Pablo Fernández-Bustamante, 2021. "Maximum Power Point Tracking Techniques for Photovoltaic Panel: A Review and Experimental Applications," Energies, MDPI, vol. 14(22), pages 1-31, November.
    17. Diane Palmer & Elena Koumpli & Ian Cole & Ralph Gottschalg & Thomas Betts, 2018. "A GIS-Based Method for Identification of Wide Area Rooftop Suitability for Minimum Size PV Systems Using LiDAR Data and Photogrammetry," Energies, MDPI, vol. 11(12), pages 1-22, December.
    18. Aryuanto Soetedjo & Irrine Budi Sulistiawati, 2020. "Implementing Discrete Model of Photovoltaic System on the Embedded Platform for Real-Time Simulation," Energies, MDPI, vol. 13(17), pages 1-22, August.
    19. Novie Ayub Windarko & Muhammad Nizar Habibi & Bambang Sumantri & Eka Prasetyono & Moh. Zaenal Efendi & Taufik, 2021. "A New MPPT Algorithm for Photovoltaic Power Generation under Uniform and Partial Shading Conditions," Energies, MDPI, vol. 14(2), pages 1-22, January.
    20. Tehzeeb-ul Hassan & Rabeh Abbassi & Houssem Jerbi & Kashif Mehmood & Muhammad Faizan Tahir & Khalid Mehmood Cheema & Rajvikram Madurai Elavarasan & Farman Ali & Irfan Ahmad Khan, 2020. "A Novel Algorithm for MPPT of an Isolated PV System Using Push Pull Converter with Fuzzy Logic Controller," Energies, MDPI, vol. 13(15), pages 1-20, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:22:p:4379-:d:288037. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.