IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v143y2021ics1364032121001921.html
   My bibliography  Save this article

Improvement of harmonic conditions in the AC/DC microgrids with the presence of filter compensation modules

Author

Listed:
  • Khosravi, N.
  • Abdolmohammadi, H.R.
  • Bagheri, S.
  • Miveh, M.R.

Abstract

The main purpose of this research is to design a new connection of AC/DC microgrids to the grid under power compensation methods to reduce harmonics amplitude by some of the filter compensation devices. The green plug filter compensator (GPFC) is used in the DC side to stabilize the dynamic voltage and reduce the transient voltage. Also, the active power filter module (APFM) is used to reduce the amplitude of current and voltage harmonics in the AC microgrid. Challenges and innovations in this research include optimization of gains coefficients of APFM by some of the heuristic algorithms and applying this setting to the three loops of voltage and current harmonics, as well as controller error to obtain an optimal response to eliminate the current and voltage harmonic range. The optimized coefficients are related to PI controller and the cost function including the controller error, current harmonics, and voltage harmonics. The optimizing coefficients using artificial bee colony (ABC), particle swarm optimization (PSO), harmony search (HS) and differential evolution (DE) algorithms is done to determine the best answer to this problem. Finally, the simulation results show that the use of APFM is essentially effective in reducing system harmonics (more than thirty-percent for current harmonics in the A1 area, and nearly sixty-percent for voltage harmonics) and this effect is more evident by optimizing the APFM control coefficients.

Suggested Citation

  • Khosravi, N. & Abdolmohammadi, H.R. & Bagheri, S. & Miveh, M.R., 2021. "Improvement of harmonic conditions in the AC/DC microgrids with the presence of filter compensation modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
  • Handle: RePEc:eee:rensus:v:143:y:2021:i:c:s1364032121001921
    DOI: 10.1016/j.rser.2021.110898
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121001921
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.110898?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hirsch, Adam & Parag, Yael & Guerrero, Josep, 2018. "Microgrids: A review of technologies, key drivers, and outstanding issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 402-411.
    2. Cagnano, A. & De Tuglie, E. & Mancarella, P., 2020. "Microgrids: Overview and guidelines for practical implementations and operation," Applied Energy, Elsevier, vol. 258(C).
    3. Gayatri, M.T.L. & Parimi, Alivelu.M. & Pavan Kumar, A.V., 2018. "A review of reactive power compensation techniques in microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1030-1036.
    4. Jose Miguel Espi & Jaime Castello, 2019. "A Novel Fast MPPT Strategy for High Efficiency PV Battery Chargers," Energies, MDPI, vol. 12(6), pages 1-16, March.
    5. Tareen, Wajahat Ullah & Mekhilef, Saad & Seyedmahmoudian, Mehdi & Horan, Ben, 2017. "Active power filter (APF) for mitigation of power quality issues in grid integration of wind and photovoltaic energy conversion system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 635-655.
    6. Jayashri, R. & Kumudini Devi, R.P., 2009. "Effect of tuned unified power flow controller to mitigate the rotor speed instability of fixed-speed wind turbines," Renewable Energy, Elsevier, vol. 34(3), pages 591-596.
    7. Planas, Estefanía & Andreu, Jon & Gárate, José Ignacio & Martínez de Alegría, Iñigo & Ibarra, Edorta, 2015. "AC and DC technology in microgrids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 726-749.
    8. Barra, P.H.A. & Coury, D.V. & Fernandes, R.A.S., 2020. "A survey on adaptive protection of microgrids and distribution systems with distributed generators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Minh Ly Duc & Lukas Hlavaty & Petr Bilik & Radek Martinek, 2023. "Harmonic Mitigation Using Meta-Heuristic Optimization for Shunt Adaptive Power Filters: A Review," Energies, MDPI, vol. 16(10), pages 1-55, May.
    2. Tingting Luo & Peng Pei & Yixia Chen & Dingyi Hao & Chen Wang, 2022. "Improvements in the Water Retention Characteristics and Thermophysical Parameters of Backfill Material in Ground Source Heat Pumps by a Molecular Sieve," Energies, MDPI, vol. 15(5), pages 1-15, February.
    3. Manuel Flota-Bañuelos & Homero Miranda-Vidales & Bernardo Fernández & Luis J. Ricalde & A. Basam & J. Medina, 2022. "Harmonic Compensation via Grid-Tied Three-Phase Inverter with Variable Structure I&I Observer-Based Control Scheme," Energies, MDPI, vol. 15(17), pages 1-19, September.
    4. Khosravi, Nima & Dowlatabadi, Masrour & Abdelghany, Muhammad Bakr & Tostado-Véliz, Marcos & Jurado, Francisco, 2024. "Enhancing battery management for HEVs and EVs: A hybrid approach for parameter identification and voltage estimation in lithium-ion battery models," Applied Energy, Elsevier, vol. 356(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hamdi Abdi, 2022. "A Brief Review of Microgrid Surveys, by Focusing on Energy Management System," Sustainability, MDPI, vol. 15(1), pages 1-20, December.
    2. Bandeiras, F. & Pinheiro, E. & Gomes, M. & Coelho, P. & Fernandes, J., 2020. "Review of the cooperation and operation of microgrid clusters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    3. Norouzi, Farshid & Hoppe, Thomas & Elizondo, Laura Ramirez & Bauer, Pavol, 2022. "A review of socio-technical barriers to Smart Microgrid development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    4. Pavel Ilyushin & Vladislav Volnyi & Konstantin Suslov & Sergey Filippov, 2023. "State-of-the-Art Literature Review of Power Flow Control Methods for Low-Voltage AC and AC-DC Microgrids," Energies, MDPI, vol. 16(7), pages 1-35, March.
    5. Jihed Hmad & Azeddine Houari & Allal El Moubarek Bouzid & Abdelhakim Saim & Hafedh Trabelsi, 2023. "A Review on Mode Transition Strategies between Grid-Connected and Standalone Operation of Voltage Source Inverters-Based Microgrids," Energies, MDPI, vol. 16(13), pages 1-41, June.
    6. Polleux, Louis & Guerassimoff, Gilles & Marmorat, Jean-Paul & Sandoval-Moreno, John & Schuhler, Thierry, 2022. "An overview of the challenges of solar power integration in isolated industrial microgrids with reliability constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    7. Guodong Liu & Maximiliano F. Ferrari & Thomas B. Ollis & Kevin Tomsovic, 2022. "An MILP-Based Distributed Energy Management for Coordination of Networked Microgrids," Energies, MDPI, vol. 15(19), pages 1-20, September.
    8. Younes Zahraoui & Ibrahim Alhamrouni & Saad Mekhilef & M. Reyasudin Basir Khan & Mehdi Seyedmahmoudian & Alex Stojcevski & Ben Horan, 2021. "Energy Management System in Microgrids: A Comprehensive Review," Sustainability, MDPI, vol. 13(19), pages 1-33, September.
    9. Gerardo Humberto Valencia-Rivera & Ivan Amaya & Jorge M. Cruz-Duarte & José Carlos Ortíz-Bayliss & Juan Gabriel Avina-Cervantes, 2021. "Hybrid Controller Based on LQR Applied to Interleaved Boost Converter and Microgrids under Power Quality Events," Energies, MDPI, vol. 14(21), pages 1-31, October.
    10. Yijin Li & Jianhua Lin & Geng Niu & Ming Wu & Xuteng Wei, 2021. "A Hilbert–Huang Transform-Based Adaptive Fault Detection and Classification Method for Microgrids," Energies, MDPI, vol. 14(16), pages 1-16, August.
    11. Guodong Liu & Maximiliano F. Ferrari & Thomas B. Ollis & Aditya Sundararajan & Mohammed Olama & Yang Chen, 2023. "Distributed Energy Management for Networked Microgrids with Hardware-in-the-Loop Validation," Energies, MDPI, vol. 16(7), pages 1-27, March.
    12. Wajahat Ullah Khan Tareen & Muhammad Aamir & Saad Mekhilef & Mutsuo Nakaoka & Mehdi Seyedmahmoudian & Ben Horan & Mudasir Ahmed Memon & Nauman Anwar Baig, 2018. "Mitigation of Power Quality Issues Due to High Penetration of Renewable Energy Sources in Electric Grid Systems Using Three-Phase APF/STATCOM Technologies: A Review," Energies, MDPI, vol. 11(6), pages 1-41, June.
    13. Barelli, L. & Bidini, G. & Pelosi, D. & Ciupageanu, D.A. & Cardelli, E. & Castellini, S. & Lăzăroiu, G., 2020. "Comparative analysis of AC and DC bus configurations for flywheel-battery HESS integration in residential micro-grids," Energy, Elsevier, vol. 204(C).
    14. Shi, Jiaqi & Ma, Liya & Li, Chenchen & Liu, Nian & Zhang, Jianhua, 2022. "A comprehensive review of standards for distributed energy resource grid-integration and microgrid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    15. Sadaqat Ali & Zhixue Zheng & Michel Aillerie & Jean-Paul Sawicki & Marie-Cécile Péra & Daniel Hissel, 2021. "A Review of DC Microgrid Energy Management Systems Dedicated to Residential Applications," Energies, MDPI, vol. 14(14), pages 1-26, July.
    16. Pavel Ilyushin & Vladislav Volnyi & Konstantin Suslov & Sergey Filippov, 2022. "Review of Methods for Addressing Challenging Issues in the Operation of Protection Devices in Microgrids with Voltages of up to 1 kV That Integrates Distributed Energy Resources," Energies, MDPI, vol. 15(23), pages 1-22, December.
    17. Kockel, Christina & Nolting, Lars & Goldbeck, Rafael & Wulf, Christina & De Doncker, Rik W. & Praktiknjo, Aaron, 2022. "A scalable life cycle assessment of alternating and direct current microgrids in office buildings," Applied Energy, Elsevier, vol. 305(C).
    18. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    19. Matthew Gough & Sérgio F. Santos & Mohammed Javadi & Rui Castro & João P. S. Catalão, 2020. "Prosumer Flexibility: A Comprehensive State-of-the-Art Review and Scientometric Analysis," Energies, MDPI, vol. 13(11), pages 1-32, May.
    20. Wilson Pavon & Esteban Inga & Silvio Simani & Matthew Armstrong, 2023. "Optimal Hierarchical Control for Smart Grid Inverters Using Stability Margin Evaluating Transient Voltage for Photovoltaic System," Energies, MDPI, vol. 16(5), pages 1-16, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:143:y:2021:i:c:s1364032121001921. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.