IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i21p4108-d280964.html
   My bibliography  Save this article

Air-Floating Characteristics of Large-Diameter Multi-Bucket Foundation for Offshore Wind Turbines

Author

Listed:
  • Xianqing Liu

    (National Engineering Research Center for Inland Waterway Regulation, Chongqing Jiaotong University, Chongqing 400074, China
    State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China)

  • Puyang Zhang

    (State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China)

  • Mingjie Zhao

    (National Engineering Research Center for Inland Waterway Regulation, Chongqing Jiaotong University, Chongqing 400074, China)

  • Hongyan Ding

    (State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China)

  • Conghuan Le

    (State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China)

Abstract

In the present study, as a novel and alternative form of foundation for offshore wind turbines, the air-floating characteristics of a large-diameter multi-bucket foundation (LDMBF) in still water and regular waves are investigated. Following the theory of single degree of freedom (DOF)-damped vibration, the equations of oscillating motion for LDMBF are established. The spring or restoring coefficients in heaving, rolling and pitching motion are modified by a dimensionless parameter ϑ related to air compressibility in every bucket with the ideal air state equation. Combined with the 1/25 scale physical model tests and the numerically simulated prototype models by MOSES, the natural periods, added mass coefficients and damping characteristics of the LDMBF in free oscillations and the response amplitude operator (RAO) have been investigated. The results shown that the added mass coefficients between 1.2 and 1.6 is equal to or larger than the recommended values for ship dynamics. The coefficient 1.2 can be taken as the lower limit 1.2 for a large draft and 1.6 can be taken as the upper limit 1.6 for a small draft. The resonant period and maximum amplitudes for heaving and pitching motions decrease with increasing draft. The amplitudes of heaving and pitching movements decrease to a limited extent with decreasing water depth.

Suggested Citation

  • Xianqing Liu & Puyang Zhang & Mingjie Zhao & Hongyan Ding & Conghuan Le, 2019. "Air-Floating Characteristics of Large-Diameter Multi-Bucket Foundation for Offshore Wind Turbines," Energies, MDPI, vol. 12(21), pages 1-22, October.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:21:p:4108-:d:280964
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/21/4108/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/21/4108/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Snyder, Brian & Kaiser, Mark J., 2009. "Ecological and economic cost-benefit analysis of offshore wind energy," Renewable Energy, Elsevier, vol. 34(6), pages 1567-1578.
    2. Banerjee, Arundhuti & Chakraborty, Tanusree & Matsagar, Vasant, 2019. "Dynamic analysis of an offshore monopile foundation used as heat exchanger for energy extraction," Renewable Energy, Elsevier, vol. 131(C), pages 518-548.
    3. Banerjee, Arundhuti & Chakraborty, Tanusree & Matsagar, Vasant, 2018. "Evaluation of possibilities in geothermal energy extraction from oceanic crust using offshore wind turbine monopiles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 685-700.
    4. Blanco, María Isabel, 2009. "The economics of wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1372-1382, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongyan Ding & Zuntao Feng & Puyang Zhang & Conghuan Le & Yaohua Guo, 2020. "Floating Performance of a Composite Bucket Foundation with an Offshore Wind Tower during Transportation," Energies, MDPI, vol. 13(4), pages 1-19, February.
    2. Zhang, Puyang & Li, Yan'e & Ding, Hongyan & Le, Conghuan, 2022. "Response analysis of a lowering operation for a three-bucket jacket foundation for offshore wind turbines," Renewable Energy, Elsevier, vol. 185(C), pages 564-584.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Xiaoxia & Yang, Hongxing & Lu, Lin, 2014. "Study on offshore wind power potential and wind farm optimization in Hong Kong," Applied Energy, Elsevier, vol. 130(C), pages 519-531.
    2. Valentine, Scott Victor, 2010. "A STEP toward understanding wind power development policy barriers in advanced economies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2796-2807, December.
    3. Satir, Mert & Murphy, Fionnuala & McDonnell, Kevin, 2018. "Feasibility study of an offshore wind farm in the Aegean Sea, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2552-2562.
    4. Sun, Xiaojing & Huang, Diangui & Wu, Guoqing, 2012. "The current state of offshore wind energy technology development," Energy, Elsevier, vol. 41(1), pages 298-312.
    5. Gao, Xiaoxia & Yang, Hongxing & Lu, Lin, 2014. "Investigation into the optimal wind turbine layout patterns for a Hong Kong offshore wind farm," Energy, Elsevier, vol. 73(C), pages 430-442.
    6. Salo, Olli & Syri, Sanna, 2014. "What economic support is needed for Arctic offshore wind power?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 343-352.
    7. Poulsen, Thomas & Lema, Rasmus, 2017. "Is the supply chain ready for the green transformation? The case of offshore wind logistics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 758-771.
    8. Makena Coffman & Paul Bernstein, 2015. "Linking Hawaii’s Islands with wind energy," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 54(1), pages 1-21, January.
    9. Nagababu, Garlapati & Kachhwaha, Surendra Singh & Savsani, Vimal, 2017. "Estimation of technical and economic potential of offshore wind along the coast of India," Energy, Elsevier, vol. 138(C), pages 79-91.
    10. Prässler, Thomas & Schaechtele, Jan, 2012. "Comparison of the financial attractiveness among prospective offshore wind parks in selected European countries," Energy Policy, Elsevier, vol. 45(C), pages 86-101.
    11. Makena Coffman & Paul Bernstein, 2013. "Economic Impacts of Inter-Island Energy in Hawaii," Working Papers 2013-16, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    12. Hong, Lixuan & Möller, Bernd, 2011. "Offshore wind energy potential in China: Under technical, spatial and economic constraints," Energy, Elsevier, vol. 36(7), pages 4482-4491.
    13. Hung-Ta Wen & Jau-Huai Lu & Mai-Xuan Phuc, 2021. "Applying Artificial Intelligence to Predict the Composition of Syngas Using Rice Husks: A Comparison of Artificial Neural Networks and Gradient Boosting Regression," Energies, MDPI, vol. 14(10), pages 1-18, May.
    14. Jin, Xin & Zhang, Zhaolong & Shi, Xiaoqiang & Ju, Wenbin, 2014. "A review on wind power industry and corresponding insurance market in China: Current status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 1069-1082.
    15. Abolhosseini, Shahrouz & Heshmati, Almas & Altmann, Jörn, 2014. "A Review of Renewable Energy Supply and Energy Efficiency Technologies," IZA Discussion Papers 8145, Institute of Labor Economics (IZA).
    16. Amirinia, Gholamreza & Mafi, Somayeh & Mazaheri, Said, 2017. "Offshore wind resource assessment of Persian Gulf using uncertainty analysis and GIS," Renewable Energy, Elsevier, vol. 113(C), pages 915-929.
    17. Raphael Calel & Jonathan Colmer & Antoine Dechezleprêtre & Matthieu Glachant, 2021. "Do Carbon Offsets Offset Carbon?," CESifo Working Paper Series 9368, CESifo.
    18. Ayman Al-Quraan & Bashar Al-Mhairat, 2022. "Intelligent Optimized Wind Turbine Cost Analysis for Different Wind Sites in Jordan," Sustainability, MDPI, vol. 14(5), pages 1-24, March.
    19. Velo, R. & Osorio, L. & Fernández, M.D. & Rodríguez, M.R., 2014. "An economic analysis of a stand-alone and grid-connected cattle farm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 883-890.
    20. Astariz, S. & Iglesias, G., 2016. "Output power smoothing and reduced downtime period by combined wind and wave energy farms," Energy, Elsevier, vol. 97(C), pages 69-81.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:21:p:4108-:d:280964. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.