IDEAS home Printed from https://ideas.repec.org/p/hae/wpaper/2013-16.html
   My bibliography  Save this paper

Economic Impacts of Inter-Island Energy in Hawaii

Author

Listed:
  • Makena Coffman

    (Department of Urban & Regional Planning; UHERO, University of Hawaii at Manoa)

  • Paul Bernstein

    (Operations Reserach)

Abstract

This study assesses the economic and greenhouse gas emissions impacts of a proposed 400MW wind farm in Hawaii. Due to its island setting, this project is a hybrid between an onshore and offshore wind development. The turbines are planned for the island(s) of Lanai and, potentially, Molokai. The project includes building an undersea cable to bring the power to the population center of Oahu. It is motivated by 1) Hawaii�s high electricity rates, which are nearly three times the national average, and 2) its Renewable Portfolio Standard mandating that 40% of electricity sales be met through renewable sources by the year 2030. We use an economy-wide computable general equilibrium model of Hawaii�s economy coupled with a detailed dynamic optimization model for the electric sector. We find that the 400MW wind project competes with imported biofuel as a least-cost means of meeting the RPS mandate. As such, the wind project serves as a �hedge� against potentially rising and volatile fuel prices, including biofuel. Though its net positive macroeconomic impacts are small, the estimated reduction by 9 million metric tons of CO2 emissions makes the project a cost-effective approach to GHG reduction. Moreover, variability in imported fuel costs are found to be a much more dominant factor in determining cost-effectiveness than potential cost overruns in the wind project�s construction.

Suggested Citation

  • Makena Coffman & Paul Bernstein, 2013. "Economic Impacts of Inter-Island Energy in Hawaii," Working Papers 2013-16, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
  • Handle: RePEc:hae:wpaper:2013-16
    as

    Download full text from publisher

    File URL: https://uhero.hawaii.edu/wp-content/uploads/2020/03/WP_2013-16.pdf
    File Function: First version, 2013
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rutherford, Thomas F, 1999. "Applied General Equilibrium Modeling with MPSGE as a GAMS Subsystem: An Overview of the Modeling Framework and Syntax," Computational Economics, Springer;Society for Computational Economics, vol. 14(1-2), pages 1-46, October.
    2. Stockton, Keith M., 2004. "Utility-scale wind on islands: an economic feasibility study of Ilio Point, Hawai’i," Renewable Energy, Elsevier, vol. 29(6), pages 949-960.
    3. Oecd, 2007. "Financial Markets Highlights - May 2007," Financial Market Trends, OECD Publishing, vol. 2007(1), pages 11-22.
    4. Zhang, ZhongXiang & Folmer, Henk, 1998. "Economic modelling approaches to cost estimates for the control of carbon dioxide emissions1," Energy Economics, Elsevier, vol. 20(1), pages 101-120, February.
    5. Bohringer, Christoph & Rutherford, Thomas F., 2008. "Combining bottom-up and top-down," Energy Economics, Elsevier, vol. 30(2), pages 574-596, March.
    6. Coffman, Makena & Griffin, James P. & Bernstein, Paul, 2012. "An assessment of greenhouse gas emissions-weighted clean energy standards," Energy Policy, Elsevier, vol. 45(C), pages 122-132.
    7. Palmer, Karen & Burtraw, Dallas, 2005. "Cost-effectiveness of renewable electricity policies," Energy Economics, Elsevier, vol. 27(6), pages 873-894, November.
    8. Agterbosch, Susanne & Meertens, Ree M. & Vermeulen, Walter J.V., 2009. "The relative importance of social and institutional conditions in the planning of wind power projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 393-405, February.
    9. Brown, Jason P. & Pender, John & Wiser, Ryan & Lantz, Eric & Hoen, Ben, 2012. "Ex post analysis of economic impacts from wind power development in U.S. counties," Energy Economics, Elsevier, vol. 34(6), pages 1743-1754.
    10. Makena Coffman, 2010. "Oil price shocks in an island economy: an analysis of the oil price-macroeconomy relationship," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 44(3), pages 599-620, June.
    11. Snyder, Brian & Kaiser, Mark J., 2009. "Ecological and economic cost-benefit analysis of offshore wind energy," Renewable Energy, Elsevier, vol. 34(6), pages 1567-1578.
    12. Slattery, Michael C. & Lantz, Eric & Johnson, Becky L., 2011. "State and local economic impacts from wind energy projects: Texas case study," Energy Policy, Elsevier, vol. 39(12), pages 7930-7940.
    13. Blanco, María Isabel, 2009. "The economics of wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1372-1382, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Makena Coffman & Paul Bernstein, 2015. "Linking Hawaii’s Islands with wind energy," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 54(1), pages 1-21, January.
    2. Rausch, Sebastian & Mowers, Matthew, 2014. "Distributional and efficiency impacts of clean and renewable energy standards for electricity," Resource and Energy Economics, Elsevier, vol. 36(2), pages 556-585.
    3. Langarita, Raquel & Duarte, Rosa & Hewings, Geoffrey & Sánchez-Chóliz, Julio, 2019. "Testing European goals for the Spanish electricity system using a disaggregated CGE model," Energy, Elsevier, vol. 179(C), pages 1288-1301.
    4. Dai, Hancheng & Mischke, Peggy & Xie, Xuxuan & Xie, Yang & Masui, Toshihiko, 2016. "Closing the gap? Top-down versus bottom-up projections of China’s regional energy use and CO2 emissions," Applied Energy, Elsevier, vol. 162(C), pages 1355-1373.
    5. Schumacher, Kim & Yang, Zhuoxiang, 2018. "The determinants of wind energy growth in the United States: Drivers and barriers to state-level development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 1-13.
    6. Sara Proença, 2013. "The role of renewable energy in Portugal´s decarbonisation strategy – application of the HyBGEM model," EcoMod2013 5647, EcoMod.
    7. Copena, Damián & Simón, Xavier, 2018. "Wind farms and payments to landowners: Opportunities for rural development for the case of Galicia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 38-47.
    8. Sun, Xiaojing & Huang, Diangui & Wu, Guoqing, 2012. "The current state of offshore wind energy technology development," Energy, Elsevier, vol. 41(1), pages 298-312.
    9. Mostafaeipour, Ali, 2010. "Feasibility study of offshore wind turbine installation in Iran compared with the world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1722-1743, September.
    10. Nils May & Øivind A. Nilsen, 2019. "The Local Economic Impact of Wind Power Deployment," FinanzArchiv: Public Finance Analysis, Mohr Siebeck, Tübingen, vol. 75(1), pages 56-92.
    11. Dakshina G. De Silva & Robert P. McComb & Anita R. Schiller, 2016. "What Blows in with the Wind?," Southern Economic Journal, John Wiley & Sons, vol. 82(3), pages 826-858, January.
    12. Omar Chisari & Antonio Estache & Gaetan Nicodeme, 2016. "Efficiency and Equity Effects of Taxing the Financial Sector: Lessons from a CGE Model for Belgium," FinanzArchiv: Public Finance Analysis, Mohr Siebeck, Tübingen, vol. 72(2), pages 125-157, June.
    13. Keček, Damira & Mikulić, Davor & Lovrinčević, Željko, 2019. "Deployment of renewable energy: Economic effects on the Croatian economy," Energy Policy, Elsevier, vol. 126(C), pages 402-410.
    14. Zerrahn, Alexander, 2017. "Wind Power and Externalities," Ecological Economics, Elsevier, vol. 141(C), pages 245-260.
    15. Salo, Olli & Syri, Sanna, 2014. "What economic support is needed for Arctic offshore wind power?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 343-352.
    16. Wiser, Ryan & Bolinger, Mark & Heath, Garvin & Keyser, David & Lantz, Eric & Macknick, Jordan & Mai, Trieu & Millstein, Dev, 2016. "Long-term implications of sustained wind power growth in the United States: Potential benefits and secondary impacts," Applied Energy, Elsevier, vol. 179(C), pages 146-158.
    17. Ghosh, Madanmohan & Luo, Deming & Siddiqui, Muhammad Shahid & Zhu, Yunfa, 2012. "Border tax adjustments in the climate policy context: CO2 versus broad-based GHG emission targeting," Energy Economics, Elsevier, vol. 34(S2), pages 154-167.
    18. Costa, Hélia & Veiga, Linda, 2021. "Local labor impact of wind energy investment: An analysis of Portuguese municipalities," Energy Economics, Elsevier, vol. 94(C).
    19. Weng, Yuwei & Cai, Wenjia & Wang, Can, 2021. "Evaluating the use of BECCS and afforestation under China’s carbon-neutral target for 2060," Applied Energy, Elsevier, vol. 299(C).
    20. Andreas Peichl & Thilo Schaefer, 2009. "FiFoSiM - an integrated tax benefit microsimulation and CGE model for Germany," International Journal of Microsimulation, International Microsimulation Association, vol. 2(1), pages 1-15.

    More about this item

    Keywords

    Wind Energy; Hawaii; Renewable Portfolio Standard; Computable General Equilibrium;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hae:wpaper:2013-16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: UHERO (email available below). General contact details of provider: https://edirc.repec.org/data/heuhius.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.