IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i20p3888-d276471.html
   My bibliography  Save this article

Characterization of a Practical-Based Ohmic Series Resistance Model under Life-Cycle Changes for a Lithium-Ion Battery

Author

Listed:
  • Natthawuth Somakettarin

    (Department of Electrical Engineering, Rajamangala University of Technology Thanyaburi, 39 Klongluang, Patumthani 12110, Thailand)

  • Achara Pichetjamroen

    (Department of Electrical Engineering, Faculty of Engineering, Kasetsart University, 50 Chatuchak, Bangkok 10900, Thailand)

Abstract

Understanding battery characteristic behaviors is indispensable in designing and managing large-scale battery-based energy storage systems in high-power applications. This paper presents a practical-based characterization method to model the ohmic series resistance of lithium-ion batteries under life-cycle consideration. Aging cells were prepared in a controlled environment, and the testing information was automatically characterized using a developed computer-based battery test system. An experimental methodology based on the cycling of pulse tests is applied for modeling the ohmic series resistance. Several aspects of the testing parameters during the cycling operations, such as the characteristic changes of the ohmic series resistance, amplitudes of the periodic test current, cell capacity, state of charge, and the rate of change of the resistance increment, are also investigated and analyzed so as to fulfill the resistance model. The accuracy of the proposed model is verified by comparing the testing information, showing a satisfactory result.

Suggested Citation

  • Natthawuth Somakettarin & Achara Pichetjamroen, 2019. "Characterization of a Practical-Based Ohmic Series Resistance Model under Life-Cycle Changes for a Lithium-Ion Battery," Energies, MDPI, vol. 12(20), pages 1-11, October.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:20:p:3888-:d:276471
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/20/3888/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/20/3888/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Haifeng Dai & Bo Jiang & Xuezhe Wei, 2018. "Impedance Characterization and Modeling of Lithium-Ion Batteries Considering the Internal Temperature Gradient," Energies, MDPI, vol. 11(1), pages 1-18, January.
    2. Xiangwei Guo & Longyun Kang & Yuan Yao & Zhizhen Huang & Wenbiao Li, 2016. "Joint Estimation of the Electric Vehicle Power Battery State of Charge Based on the Least Squares Method and the Kalman Filter Algorithm," Energies, MDPI, vol. 9(2), pages 1-16, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nickolay I. Shchurov & Sergey I. Dedov & Boris V. Malozyomov & Alexander A. Shtang & Nikita V. Martyushev & Roman V. Klyuev & Sergey N. Andriashin, 2021. "Degradation of Lithium-Ion Batteries in an Electric Transport Complex," Energies, MDPI, vol. 14(23), pages 1-33, December.
    2. Andrea Carloni & Federico Baronti & Roberto Di Rienzo & Roberto Roncella & Roberto Saletti, 2020. "Effect of the DC-Link Capacitor Size on the Wireless Inductive-Coupled Opportunity-Charging of a Drone Battery," Energies, MDPI, vol. 13(10), pages 1-13, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gaizka Saldaña & José Ignacio San Martín & Inmaculada Zamora & Francisco Javier Asensio & Oier Oñederra, 2019. "Analysis of the Current Electric Battery Models for Electric Vehicle Simulation," Energies, MDPI, vol. 12(14), pages 1-27, July.
    2. Qi Yao & Dylan-Dah-Chuan Lu & Gang Lei, 2021. "Accurate Online Battery Impedance Measurement Method with Low Output Voltage Ripples on Power Converters," Energies, MDPI, vol. 14(4), pages 1-16, February.
    3. Thanh-Tung Nguyen & Abdul Basit Khan & Younghwi Ko & Woojin Choi, 2020. "An Accurate State of Charge Estimation Method for Lithium Iron Phosphate Battery Using a Combination of an Unscented Kalman Filter and a Particle Filter," Energies, MDPI, vol. 13(17), pages 1-15, September.
    4. Bizhong Xia & Wenhui Zheng & Ruifeng Zhang & Zizhou Lao & Zhen Sun, 2017. "A Novel Observer for Lithium-Ion Battery State of Charge Estimation in Electric Vehicles Based on a Second-Order Equivalent Circuit Model," Energies, MDPI, vol. 10(8), pages 1-20, August.
    5. Zhang, Shuzhi & Zhang, Chen & Jiang, Shiyong & Zhang, Xiongwen, 2022. "A comparative study of different adaptive extended/unscented Kalman filters for lithium-ion battery state-of-charge estimation," Energy, Elsevier, vol. 246(C).
    6. Li, Xiaoyu & Wang, Zhenpo & Zhang, Lei, 2019. "Co-estimation of capacity and state-of-charge for lithium-ion batteries in electric vehicles," Energy, Elsevier, vol. 174(C), pages 33-44.
    7. Shrivastava, Prashant & Soon, Tey Kok & Idris, Mohd Yamani Idna Bin & Mekhilef, Saad, 2019. "Overview of model-based online state-of-charge estimation using Kalman filter family for lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    8. Bizhong Xia & Zizhou Lao & Ruifeng Zhang & Yong Tian & Guanghao Chen & Zhen Sun & Wei Wang & Wei Sun & Yongzhi Lai & Mingwang Wang & Huawen Wang, 2017. "Online Parameter Identification and State of Charge Estimation of Lithium-Ion Batteries Based on Forgetting Factor Recursive Least Squares and Nonlinear Kalman Filter," Energies, MDPI, vol. 11(1), pages 1-23, December.
    9. Jiale Xie & Jiachen Ma & Jun Chen, 2018. "Peukert-Equation-Based State-of-Charge Estimation for LiFePO4 Batteries Considering the Battery Thermal Evolution Effect," Energies, MDPI, vol. 11(5), pages 1-14, May.
    10. Raijmakers, L.H.J. & Danilov, D.L. & Eichel, R.-A. & Notten, P.H.L., 2019. "A review on various temperature-indication methods for Li-ion batteries," Applied Energy, Elsevier, vol. 240(C), pages 918-945.
    11. Semeraro, Concetta & Caggiano, Mariateresa & Olabi, Abdul-Ghani & Dassisti, Michele, 2022. "Battery monitoring and prognostics optimization techniques: Challenges and opportunities," Energy, Elsevier, vol. 255(C).
    12. Yong Li & Jue Yang & Wei Long Liu & Cheng Lin Liao, 2020. "Multi-Level Model Reduction and Data-Driven Identification of the Lithium-Ion Battery," Energies, MDPI, vol. 13(15), pages 1-23, July.
    13. Lin, Cheng & Yu, Quanqing & Xiong, Rui & Wang, Le Yi, 2017. "A study on the impact of open circuit voltage tests on state of charge estimation for lithium-ion batteries," Applied Energy, Elsevier, vol. 205(C), pages 892-902.
    14. Xiong, Rui & Yu, Quanqing & Wang, Le Yi & Lin, Cheng, 2017. "A novel method to obtain the open circuit voltage for the state of charge of lithium ion batteries in electric vehicles by using H infinity filter," Applied Energy, Elsevier, vol. 207(C), pages 346-353.
    15. Chuanxue Song & Yulong Shao & Shixin Song & Cheng Chang & Fang Zhou & Silun Peng & Feng Xiao, 2017. "Energy Management of Parallel-Connected Cells in Electric Vehicles Based on Fuzzy Logic Control," Energies, MDPI, vol. 10(3), pages 1-13, March.
    16. Chuanxue Song & Yulong Shao & Shixin Song & Silun Peng & Fang Zhou & Cheng Chang & Da Wang, 2017. "Insulation Resistance Monitoring Algorithm for Battery Pack in Electric Vehicle Based on Extended Kalman Filtering," Energies, MDPI, vol. 10(5), pages 1-13, May.
    17. Linghu, Jinqing & Kang, Longyun & Liu, Ming & Luo, Xuan & Feng, Yuanbin & Lu, Chusheng, 2019. "Estimation for state-of-charge of lithium-ion battery based on an adaptive high-degree cubature Kalman filter," Energy, Elsevier, vol. 189(C).
    18. Zhongwei Deng & Lin Yang & Yishan Cai & Hao Deng, 2016. "Online Identification with Reliability Criterion and State of Charge Estimation Based on a Fuzzy Adaptive Extended Kalman Filter for Lithium-Ion Batteries," Energies, MDPI, vol. 9(6), pages 1-16, June.
    19. Xin Lu & Hui Li & Jun Xu & Siyuan Chen & Ning Chen, 2018. "Rapid Estimation Method for State of Charge of Lithium-Ion Battery Based on Fractional Continual Variable Order Model," Energies, MDPI, vol. 11(4), pages 1-18, March.
    20. Brian Ospina Agudelo & Walter Zamboni & Eric Monmasson, 2021. "A Comparison of Time-Domain Implementation Methods for Fractional-Order Battery Impedance Models," Energies, MDPI, vol. 14(15), pages 1-23, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:20:p:3888-:d:276471. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.