IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i19p3725-d272047.html
   My bibliography  Save this article

Surface Microtexture Fabrication and Temperature Gradient Regulation of Micro Wankel Engine

Author

Listed:
  • Tianfeng Zhou

    (Key Laboratory of Fundamental Science for Advanced Machining, Beijing Institute of Technology, Beijing 100081, China)

  • Ying Wang

    (School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China)

  • Jiangtao Che

    (School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China)

  • Benshuai Ruan

    (School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China)

  • Jinxiang Liu

    (School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China)

  • Xibin Wang

    (Key Laboratory of Fundamental Science for Advanced Machining, Beijing Institute of Technology, Beijing 100081, China)

Abstract

Nowadays, micro engine miniaturization is one of the most challenging issues, especially for the design and fabrication of the high-power-density micro Wankel engine. With the decrease of the size of the micro engine, the problem of the heat deformation of the cylinder becomes more serious. In this paper, a micro Wankel engine with microtextures on the outer surface of the cylinder is designed and manufactured to diffuse the heat dissipation and regulate the temperature gradient, so as to increase the power output density. First, a series of finite element simulations are conducted to design a type of ideal surface microtexture. Then, the machining condition is optimized to fabricate microtextures by micro cutting on the cylinder surface by studying the processing parameters. Finally, the performance of the new micro Wankel engine in terms of the temperature gradient regulation and the mechanical power output is tested and compared with that of the un-textured micro engine. The comparison results show that temperature of the textured micro engine was dropped from 185 °C to 125 °C and the mechanical power output increased by 10.74% from that of its un-textured counterpart, verifying the proposed methods for temperature gradient regulation.

Suggested Citation

  • Tianfeng Zhou & Ying Wang & Jiangtao Che & Benshuai Ruan & Jinxiang Liu & Xibin Wang, 2019. "Surface Microtexture Fabrication and Temperature Gradient Regulation of Micro Wankel Engine," Energies, MDPI, vol. 12(19), pages 1-16, September.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:19:p:3725-:d:272047
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/19/3725/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/19/3725/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ettefaghi, Ehsanollah & Ghobadian, Barat & Rashidi, Alimorad & Najafi, G. & Khoshtaghaza, Mohammad Hadi & Rashtchi, Maryam & Sadeghian, Sina, 2018. "A novel bio-nano emulsion fuel based on biodegradable nanoparticles to improve diesel engines performance and reduce exhaust emissions," Renewable Energy, Elsevier, vol. 125(C), pages 64-72.
    2. Gonca, Guven & Sahin, Bahri & Parlak, Adnan & Ayhan, Vezir & Cesur, İdris & Koksal, Sakip, 2015. "Application of the Miller cycle and turbo charging into a diesel engine to improve performance and decrease NO emissions," Energy, Elsevier, vol. 93(P1), pages 795-800.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mostafa Esmaeili Shayan & Gholamhassan Najafi & Barat Ghobadian & Shiva Gorjian & Mohamed Mazlan & Mehdi Samami & Alireza Shabanzadeh, 2022. "Flexible Photovoltaic System on Non-Conventional Surfaces: A Techno-Economic Analysis," Sustainability, MDPI, vol. 14(6), pages 1-14, March.
    2. Gonca, Guven & Dobrucali, Erinc, 2016. "Theoretical and experimental study on the performance of a diesel engine fueled with diesel–biodiesel blends," Renewable Energy, Elsevier, vol. 93(C), pages 658-666.
    3. Shen, Kai & Xu, Zishun & Chen, Hong & Zhang, Zhendong, 2021. "Investigation on the EGR effect to further improve fuel economy and emissions effect of Miller cycle turbocharged engine," Energy, Elsevier, vol. 215(PB).
    4. EL-Seesy, Ahmed I. & Hassan, Hamdy, 2019. "Investigation of the effect of adding graphene oxide, graphene nanoplatelet, and multiwalled carbon nanotube additives with n-butanol-Jatropha methyl ester on a diesel engine performance," Renewable Energy, Elsevier, vol. 132(C), pages 558-574.
    5. Das, Amar Kumar & Sahu, Santosh Kumar & Panda, Achyut Kumar, 2022. "Current status and prospects of alternate liquid transportation fuels in compression ignition engines: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    6. Kumar, Himansh & Sarma, A.K. & Kumar, Pramod, 2020. "A comprehensive review on preparation, characterization, and combustion characteristics of microemulsion based hybrid biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    7. Hazar, Hanbey & Sevinc, Huseyin, 2019. "Investigation of the effects of pre-heated linseed oil on performance and exhaust emission at a coated diesel engine," Renewable Energy, Elsevier, vol. 130(C), pages 961-967.
    8. Li, Xiangrong & Gao, Haobu & Zhao, Luming & Zhang, Zheng & He, Xu & Liu, Fushui, 2016. "Combustion and emission performance of a split injection diesel engine in a double swirl combustion system," Energy, Elsevier, vol. 114(C), pages 1135-1146.
    9. Sarvestani, Nasrin Sabet & Tabasizadeh, Mohammad & Abbaspour Fard, Mohammad Hossein & Nayebzadeh, Hamed & Van, Thuy Chu & Jafari, Mohammad & Bodisco, Timothy A. & Ristovski, Zoran & Brown, Richard J., 2021. "Effects of enhanced fuel with Mg-doped Fe3O4 nanoparticles on combustion of a compression ignition engine: Influence of Mg cation concentration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    10. Broatch, A. & Margot, X. & Novella, R. & Gomez-Soriano, J., 2016. "Combustion noise analysis of partially premixed combustion concept using gasoline fuel in a 2-stroke engine," Energy, Elsevier, vol. 107(C), pages 612-624.
    11. Kang, Wooseok & Choi, Byungchul & Jung, Seunghun & Park, Suhan, 2018. "PM and NOx reduction characteristics of LNT/DPF+SCR/DPF hybrid system," Energy, Elsevier, vol. 143(C), pages 439-447.
    12. Gonca, Guven, 2016. "Comparative performance analyses of irreversible OMCE (Otto Miller cycle engine)-DiMCE (Diesel miller cycle engine)-DMCE (Dual Miller cycle engine)," Energy, Elsevier, vol. 109(C), pages 152-159.
    13. Karagoz, Mustafa & Uysal, Cuneyt & Agbulut, Umit & Saridemir, Suat, 2021. "Exergetic and exergoeconomic analyses of a CI engine fueled with diesel-biodiesel blends containing various metal-oxide nanoparticles," Energy, Elsevier, vol. 214(C).
    14. Gonca, Guven & Sahin, Bahri & Parlak, Adnan & Ayhan, Vezir & Cesur, Idris & Koksal, Sakip, 2017. "Investigation of the effects of the steam injection method (SIM) on the performance and emission formation of a turbocharged and Miller cycle diesel engine (MCDE)," Energy, Elsevier, vol. 119(C), pages 926-937.
    15. Mazlan, M. & Najafi, G. & Hoseini, S.S. & Mamat, R. & Alenzi, Raslan A. & Mofijur, M. & Yusaf, T., 2021. "Thermal efficiency analysis of a nanofluid-based micro combined heat and power system using CNG and biogas," Energy, Elsevier, vol. 231(C).
    16. Hoseini, S.S. & Najafi, G. & Ghobadian, B. & Rahimi, A. & Yusaf, Talal & Mamat, Rizalman & Sidik, N.A.C. & Azmi, W.H., 2017. "Effects of biodiesel fuel obtained from Salvia macrosiphon oil (ultrasonic-assisted) on performance and emissions of diesel engine," Energy, Elsevier, vol. 131(C), pages 289-296.
    17. Wei, Shengli & Zhao, Xiqian & Liu, Xin & Qu, Xiaonan & He, Chunhui & Leng, Xianyin, 2019. "Research on effects of early intake valve closure (EIVC) miller cycle on combustion and emissions of marine diesel engines at medium and low loads," Energy, Elsevier, vol. 173(C), pages 48-58.
    18. Tadeusz Dziubak & Mirosław Karczewski, 2022. "Experimental Studies of the Effect of Air Filter Pressure Drop on the Composition and Emission Changes of a Compression Ignition Internal Combustion Engine," Energies, MDPI, vol. 15(13), pages 1-31, June.
    19. Xu, Guangfu & Jia, Ming & Li, Yaopeng & Xie, Maozhao & Su, Wanhua, 2017. "Multi-objective optimization of the combustion of a heavy-duty diesel engine with low temperature combustion (LTC) under a wide load range: (II) Detailed parametric, energy, and exergy analysis," Energy, Elsevier, vol. 139(C), pages 247-261.
    20. Zhao, Jinxing, 2017. "Research and application of over-expansion cycle (Atkinson and Miller) engines – A review," Applied Energy, Elsevier, vol. 185(P1), pages 300-319.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:19:p:3725-:d:272047. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.