IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i18p3585-d268828.html
   My bibliography  Save this article

Long-Term Wet Bioenergy Resources in Switzerland: Drivers and Projections until 2050

Author

Listed:
  • Vanessa Burg

    (Swiss Forest, Landscape and Snow Federal Research Institute WSL, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
    Swiss Federal Institute of Technology Zürich (ETH Zürich), Institute of Environmental Engineering, John-von-Neumann-Weg 9, CH-8093 Zürich, Switzerland)

  • Gillianne Bowman

    (Swiss Forest, Landscape and Snow Federal Research Institute WSL, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland)

  • Stefanie Hellweg

    (Swiss Federal Institute of Technology Zürich (ETH Zürich), Institute of Environmental Engineering, John-von-Neumann-Weg 9, CH-8093 Zürich, Switzerland)

  • Oliver Thees

    (Swiss Forest, Landscape and Snow Federal Research Institute WSL, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland)

Abstract

In the energy sector, decisions and technology implementations often necessitate a mid- to long-term perspective. Thus, reliable assessments of future resource availability are needed to support the decision-making process. In Switzerland, similarly to other countries, only a limited part of the available wet biomass feedstock is currently used for anaerobic digestion. Understanding potential future trajectories of the available biomass amount is therefore essential to facilitate its deployment for energetic use and to establish adequate bioenergy strategies. Here, we utilized extensive government data, historical trends, and data from academic literature to identify relevant drivers and their trends. Starting with current biomass potential, the future availability and variation of resources was estimated by taking into account selected drivers and their projected future development. Our results indicated an increase of over 6% in available wet bioenergy resources by 2050 (from 43.4 petajoules (PJ) of primary energy currently to 44.3 PJ in 2035 and 45.4 PJ in 2050), where a Monte Carlo analysis showed that this projection is linked to high uncertainty. Manure remains by far the biomass with the largest additional potential. Possible consequences regarding the country’s pool of biogas facilities and their development are discussed.

Suggested Citation

  • Vanessa Burg & Gillianne Bowman & Stefanie Hellweg & Oliver Thees, 2019. "Long-Term Wet Bioenergy Resources in Switzerland: Drivers and Projections until 2050," Energies, MDPI, vol. 12(18), pages 1-21, September.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:18:p:3585-:d:268828
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/18/3585/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/18/3585/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daniel Hoornweg & Perinaz Bhada-Tata & Chris Kennedy, 2013. "Environment: Waste production must peak this century," Nature, Nature, vol. 502(7473), pages 615-617, October.
    2. Evelina Trutnevyte & Céline Guivarch & Robert Lempert & Neil Strachan, 2016. "Reinvigorating the scenario technique to expand uncertainty consideration," Climatic Change, Springer, vol. 135(3), pages 373-379, April.
    3. Andreas Kiesel & Moritz Wagner & Iris Lewandowski, 2016. "Environmental Performance of Miscanthus, Switchgrass and Maize: Can C4 Perennials Increase the Sustainability of Biogas Production?," Sustainability, MDPI, vol. 9(1), pages 1-20, December.
    4. George Philippidis & Heleen Bartelings & John Helming & Robert M’barek & Edward Smeets & Hans Van Meijl, 2018. "The Good, the Bad and the Uncertain: Bioenergy Use in the European Union," Energies, MDPI, vol. 11(10), pages 1-19, October.
    5. Fengli Zhang & Chen Li & Yajie Yu & Dana M. Johnson, 2019. "Resources and Future Availability of Agricultural Biomass for Energy Use in Beijing," Energies, MDPI, vol. 12(10), pages 1-14, May.
    6. Steubing, B. & Zah, R. & Waeger, P. & Ludwig, C., 2010. "Bioenergy in Switzerland: Assessing the domestic sustainable biomass potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2256-2265, October.
    7. Scarlat, Nicolae & Dallemand, Jean-Franc¸ois & Banja, Manjola, 2013. "Possible impact of 2020 bioenergy targets on European Union land use. A scenario-based assessment from national renewable energy action plans proposals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 595-606.
    8. Scarlat, Nicolae & Fahl, Fernando & Dallemand, Jean-François & Monforti, Fabio & Motola, Vicenzo, 2018. "A spatial analysis of biogas potential from manure in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 915-930.
    9. de Vries, Bert J.M. & van Vuuren, Detlef P. & Hoogwijk, Monique M., 2007. "Renewable energy sources: Their global potential for the first-half of the 21st century at a global level: An integrated approach," Energy Policy, Elsevier, vol. 35(4), pages 2590-2610, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Panos, Evangelos & Glynn, James & Kypreos, Socrates & Lehtilä, Antti & Yue, Xiufeng & Ó Gallachóir, Brian & Daniels, David & Dai, Hancheng, 2023. "Deep decarbonisation pathways of the energy system in times of unprecedented uncertainty in the energy sector," Energy Policy, Elsevier, vol. 180(C).
    2. Matthias Erni & Vanessa Burg & Leo Bont & Oliver Thees & Marco Ferretti & Golo Stadelmann & Janine Schweier, 2020. "Current (2020) and Long-Term (2035 and 2050) Sustainable Potentials of Wood Fuel in Switzerland," Sustainability, MDPI, vol. 12(22), pages 1-30, November.
    3. Siegrist, Armin & Bowman, Gillianne & Burg, Vanessa, 2022. "Energy generation potentials from agricultural residues: The influence of techno-spatial restrictions on biomethane, electricity, and heat production," Applied Energy, Elsevier, vol. 327(C).
    4. Istrate, Ioan-Robert & Medina-Martos, Enrique & Galvez-Martos, Jose-Luis & Dufour, Javier, 2021. "Assessment of the energy recovery potential of municipal solid waste under future scenarios," Applied Energy, Elsevier, vol. 293(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moritz von Cossel & Yasir Iqbal & Iris Lewandowski, 2019. "Improving the Ecological Performance of Miscanthus ( Miscanthus × giganteus Greef et Deuter) through Intercropping with Woad ( Isatis tinctoria L.) and Yellow Melilot ( Melilotus officinalis L.)," Agriculture, MDPI, vol. 9(9), pages 1-12, September.
    2. Long, Huiling & Li, Xiaobing & Wang, Hong & Jia, Jingdun, 2013. "Biomass resources and their bioenergy potential estimation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 344-352.
    3. Matthias Erni & Vanessa Burg & Leo Bont & Oliver Thees & Marco Ferretti & Golo Stadelmann & Janine Schweier, 2020. "Current (2020) and Long-Term (2035 and 2050) Sustainable Potentials of Wood Fuel in Switzerland," Sustainability, MDPI, vol. 12(22), pages 1-30, November.
    4. Jianliang Wang & Yuru Yang & Yongmei Bentley & Xu Geng & Xiaojie Liu, 2018. "Sustainability Assessment of Bioenergy from a Global Perspective: A Review," Sustainability, MDPI, vol. 10(8), pages 1-19, August.
    5. Kriegler, Elmar, 2011. "Comment," Energy Economics, Elsevier, vol. 33(4), pages 594-596, July.
    6. Mahtta, Richa & Joshi, P.K. & Jindal, Alok Kumar, 2014. "Solar power potential mapping in India using remote sensing inputs and environmental parameters," Renewable Energy, Elsevier, vol. 71(C), pages 255-262.
    7. Grzegorz Ślusarz & Barbara Gołębiewska & Marek Cierpiał-Wolan & Jarosław Gołębiewski & Dariusz Twaróg & Sebastian Wójcik, 2021. "Regional Diversification of Potential, Production and Efficiency of Use of Biogas and Biomass in Poland," Energies, MDPI, vol. 14(3), pages 1-20, January.
    8. Huda, A.S.N. & Mekhilef, S. & Ahsan, A., 2014. "Biomass energy in Bangladesh: Current status and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 504-517.
    9. Köberle, Alexandre C. & Gernaat, David E.H.J. & van Vuuren, Detlef P., 2015. "Assessing current and future techno-economic potential of concentrated solar power and photovoltaic electricity generation," Energy, Elsevier, vol. 89(C), pages 739-756.
    10. Kütt, Lauri & Millar, John & Karttunen, Antti & Lehtonen, Matti & Karppinen, Maarit, 2018. "Thermoelectric applications for energy harvesting in domestic applications and micro-production units. Part I: Thermoelectric concepts, domestic boilers and biomass stoves," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 519-544.
    11. Alessandro De Matteis & Fethiye Burcu Turkmen Ceylan & Mona Daoud & Anne Kahuthu, 2022. "A systemic approach to tackling ocean plastic debris," Environment Systems and Decisions, Springer, vol. 42(1), pages 136-145, March.
    12. Batidzirai, B. & Smeets, E.M.W. & Faaij, A.P.C., 2012. "Harmonising bioenergy resource potentials—Methodological lessons from review of state of the art bioenergy potential assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6598-6630.
    13. Hussain, C.M. Iftekhar & Norton, Brian & Duffy, Aidan, 2017. "Technological assessment of different solar-biomass systems for hybrid power generation in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1115-1129.
    14. Mostafaeipour, Ali, 2010. "Productivity and development issues of global wind turbine industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 1048-1058, April.
    15. Silva Herran, Diego & Dai, Hancheng & Fujimori, Shinichiro & Masui, Toshihiko, 2016. "Global assessment of onshore wind power resources considering the distance to urban areas," Energy Policy, Elsevier, vol. 91(C), pages 75-86.
    16. Soha, Tamás & Papp, Luca & Csontos, Csaba & Munkácsy, Béla, 2021. "The importance of high crop residue demand on biogas plant site selection, scaling and feedstock allocation – A regional scale concept in a Hungarian study area," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    17. Arias-Gaviria, Jessica & Osorio, Andres F. & Arango-Aramburo, Santiago, 2020. "Estimating the practical potential for deep ocean water extraction in the Caribbean," Renewable Energy, Elsevier, vol. 150(C), pages 307-319.
    18. Imran Khan & Furrukh Bashir & Rashid Ahmad & Muhammad Ayub, 2021. "Shopping Motivation and Green Consumption: A Study about Green Buying Behavior of Pakistani Consumers," iRASD Journal of Management, International Research Alliance for Sustainable Development (iRASD), vol. 3(3), pages 233-242, December.
    19. Nikas, A. & Gambhir, A. & Trutnevyte, E. & Koasidis, K. & Lund, H. & Thellufsen, J.Z. & Mayer, D. & Zachmann, G. & Miguel, L.J. & Ferreras-Alonso, N. & Sognnaes, I. & Peters, G.P. & Colombo, E. & Howe, 2021. "Perspective of comprehensive and comprehensible multi-model energy and climate science in Europe," Energy, Elsevier, vol. 215(PA).
    20. Cordier, Mateo & Uehara, Takuro & Baztan, Juan & Jorgensen, Bethany & Yan, Huijie, 2021. "Plastic pollution and economic growth: The influence of corruption and lack of education," Ecological Economics, Elsevier, vol. 182(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:18:p:3585-:d:268828. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.