IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i16p3115-d257407.html
   My bibliography  Save this article

Control Strategies Applied to Wave Energy Converters: State of the Art

Author

Listed:
  • Aleix Maria-Arenas

    (Department of Engineering, Wedge Global S.L., 35017 Las palmas de Gran Canaria, Spain)

  • Aitor J. Garrido

    (Automatic Control Group—ACG, Department of Automatic Control and Systems Engineering, Engineering School of Bilbao, University of the Basque Country (UPV/EHU), 48012 Bilbao, Spain)

  • Eugen Rusu

    (Department of Applied Mechanics, University Dunarea de Jos of Galati, Galati 800008, Romania)

  • Izaskun Garrido

    (Automatic Control Group—ACG, Department of Automatic Control and Systems Engineering, Engineering School of Bilbao, University of the Basque Country (UPV/EHU), 48012 Bilbao, Spain)

Abstract

Wave energy’s path towards commercialization requires maximizing reliability, survivability, an improvement in energy harvested from the wave and efficiency of the wave to wire conversion. In this sense, control strategies directly impact the survivability and safe operation of the device, as well as the ability to harness the energy from the wave. For example, tuning the device’s natural frequency to the incoming wave allows resonance mode operation and amplifies the velocity, which has a quadratic proportionality to the extracted energy. In this article, a review of the main control strategies applied in wave energy conversion is presented along their corresponding power take-off (PTO) systems.

Suggested Citation

  • Aleix Maria-Arenas & Aitor J. Garrido & Eugen Rusu & Izaskun Garrido, 2019. "Control Strategies Applied to Wave Energy Converters: State of the Art," Energies, MDPI, vol. 12(16), pages 1-19, August.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:16:p:3115-:d:257407
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/16/3115/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/16/3115/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Temiz, Irina & Leijon, Jennifer & Ekergård, Boel & Boström, Cecilia, 2018. "Economic aspects of latching control for a wave energy converter with a direct drive linear generator power take-off," Renewable Energy, Elsevier, vol. 128(PA), pages 57-67.
    2. Jin, Siya & Patton, Ron J. & Guo, Bingyong, 2019. "Enhancement of wave energy absorption efficiency via geometry and power take-off damping tuning," Energy, Elsevier, vol. 169(C), pages 819-832.
    3. O'Sullivan, Adrian C.M. & Lightbody, Gordon, 2017. "Co-design of a wave energy converter using constrained predictive control," Renewable Energy, Elsevier, vol. 102(PA), pages 142-156.
    4. Vincenzo Franzitta & Pietro Catrini & Domenico Curto, 2017. "Wave Energy Assessment along Sicilian Coastline, Based on DEIM Point Absorber," Energies, MDPI, vol. 10(3), pages 1-15, March.
    5. Rodríguez, Claudio A. & Rosa-Santos, Paulo & Taveira-Pinto, Francisco, 2019. "Assessment of damping coefficients of power take-off systems of wave energy converters: A hybrid approach," Energy, Elsevier, vol. 169(C), pages 1022-1038.
    6. Burgaç, Alper & Yavuz, Hakan, 2019. "Fuzzy Logic based hybrid type control implementation of a heaving wave energy converter," Energy, Elsevier, vol. 170(C), pages 1202-1214.
    7. Wu, Jinming & Yao, Yingxue & Zhou, Liang & Göteman, Malin, 2018. "Real-time latching control strategies for the solo Duck wave energy converter in irregular waves," Applied Energy, Elsevier, vol. 222(C), pages 717-728.
    8. Vincenzo Franzitta & Domenico Curto & Davide Rao, 2016. "Energetic Sustainability Using Renewable Energies in the Mediterranean Sea," Sustainability, MDPI, vol. 8(11), pages 1-16, November.
    9. Vincenzo Franzitta & Domenico Curto & Daniele Milone & Alessia Viola, 2016. "The Desalination Process Driven by Wave Energy: A Challenge for the Future," Energies, MDPI, vol. 9(12), pages 1-16, December.
    10. Wang, Liguo & Isberg, Jan & Tedeschi, Elisabetta, 2018. "Review of control strategies for wave energy conversion systems and their validation: the wave-to-wire approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 366-379.
    11. Li, Liang & Yuan, Zhiming & Gao, Yan, 2018. "Maximization of energy absorption for a wave energy converter using the deep machine learning," Energy, Elsevier, vol. 165(PA), pages 340-349.
    12. Jin, Peng & Zhou, Binzhen & Göteman, Malin & Chen, Zhongfei & Zhang, Liang, 2019. "Performance optimization of a coaxial-cylinder wave energy converter," Energy, Elsevier, vol. 174(C), pages 450-459.
    13. Takvor H. Soukissian & Dimitra Denaxa & Flora Karathanasi & Aristides Prospathopoulos & Konstantinos Sarantakos & Athanasia Iona & Konstantinos Georgantas & Spyridon Mavrakos, 2017. "Marine Renewable Energy in the Mediterranean Sea: Status and Perspectives," Energies, MDPI, vol. 10(10), pages 1-56, September.
    14. Ozkop, Emre & Altas, Ismail H., 2017. "Control, power and electrical components in wave energy conversion systems: A review of the technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 106-115.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qin, Jian & Zhang, Zhenquan & Huang, Shuting & Wang, Wei & Liu, Yanjun & Xue, Gang, 2024. "Energy capture performance enhancement of point absorber wave energy converter using magnetic tristable and quadstable mechanisms," Renewable Energy, Elsevier, vol. 221(C).
    2. Payam Aboutalebi & Fares M’zoughi & Izaskun Garrido & Aitor J. Garrido, 2021. "Performance Analysis on the Use of Oscillating Water Column in Barge-Based Floating Offshore Wind Turbines," Mathematics, MDPI, vol. 9(5), pages 1-22, February.
    3. Kushal A. Prasad & Aneesh A. Chand & Nallapaneni Manoj Kumar & Sumesh Narayan & Kabir A. Mamun, 2022. "A Critical Review of Power Take-Off Wave Energy Technology Leading to the Conceptual Design of a Novel Wave-Plus-Photon Energy Harvester for Island/Coastal Communities’ Energy Needs," Sustainability, MDPI, vol. 14(4), pages 1-55, February.
    4. Zhang, Yongxing & Huang, Zhicong & Zou, Bowei & Bian, Jing, 2023. "Conceptual design and analysis for a novel parallel configuration-type wave energy converter," Renewable Energy, Elsevier, vol. 208(C), pages 627-644.
    5. Hu, Huakun & Xue, Wendong & Jiang, Peng & Li, Yong, 2022. "Bibliometric analysis for ocean renewable energy: An comprehensive review for hotspots, frontiers, and emerging trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    6. Lorenzo Ciappi & Lapo Cheli & Irene Simonetti & Alessandro Bianchini & Giampaolo Manfrida & Lorenzo Cappietti, 2020. "Wave-to-Wire Model of an Oscillating-Water-Column Wave Energy Converter and Its Application to Mediterranean Energy Hot-Spots," Energies, MDPI, vol. 13(21), pages 1-28, October.
    7. Benites-Munoz, Daniela & Huang, Luofeng & Thomas, Giles, 2024. "Optimal array arrangement of oscillating wave surge converters: An analysis based on three devices," Renewable Energy, Elsevier, vol. 222(C).
    8. Sunil Kumar Mishra & Amitkumar V. Jha & Bhargav Appasani & Nicu Bizon & Phatiphat Thounthong & Pongsiri Mungporn, 2023. "Ocean Wave Energy Control Using Aquila Optimization Technique," Energies, MDPI, vol. 16(11), pages 1-21, June.
    9. Marcin Drzewiecki & Jarosław Guziński, 2020. "Fuzzy Control of Waves Generation in a Towing Tank," Energies, MDPI, vol. 13(8), pages 1-17, April.
    10. Aleix Maria-Arenas & Aitor J. Garrido & Eugen Rusu & Izaskun Garrido, 2020. "Addendum: Maria-Arenas, A. et al. Control Strategies Applied to Wave Energy Converters: State of the Art. Energies 2019, 12, 3115," Energies, MDPI, vol. 13(7), pages 1-1, April.
    11. Niklas Enoch Andersen & Jakob Blåbjerg Mathiasen & Maja Grankær Carøe & Chen Chen & Christian-Emil Helver & Allan Lynggaard Ludvigsen & Nis Frededal Ebsen & Anders Hedegaard Hansen, 2022. "Optimisation of Control Algorithm for Hydraulic Power Take-Off System in Wave Energy Converter," Energies, MDPI, vol. 15(19), pages 1-18, September.
    12. Liliana Rusu & Eugen Rusu, 2021. "Evaluation of the Worldwide Wave Energy Distribution Based on ERA5 Data and Altimeter Measurements," Energies, MDPI, vol. 14(2), pages 1-16, January.
    13. Fabian G. Pierart & Matias Rubilar & Jaime Rohten, 2023. "Experimental Validation of Damping Adjustment Method with Generator Parameter Study for Wave Energy Conversion," Energies, MDPI, vol. 16(14), pages 1-14, July.
    14. In-Ho Kim & Byeong-Ryong Kim & Seon-Jun Jang, 2023. "Performance Validation of Resonant Wave Power Converter with Variable Moment of Inertia," Energies, MDPI, vol. 16(18), pages 1-13, September.
    15. Hall, Carrie & Sheng, Wanan & Wu, Yueqi & Aggidis, George, 2024. "The impact of model predictive control structures and constraints on a wave energy converter with hydraulic power take off system," Renewable Energy, Elsevier, vol. 224(C).
    16. Mahmoodi, Kumars & Nepomuceno, Erivelton & Razminia, Abolhassan, 2022. "Wave excitation force forecasting using neural networks," Energy, Elsevier, vol. 247(C).
    17. Michael Fratita & Florin Popescu & Eugen Rusu & Ion V. Ion & Răzvan Mahu, 2023. "Romanian Energy System Analysis (Production, Consumption, and Distribution)," Energies, MDPI, vol. 16(16), pages 1-14, August.
    18. José Carlos Domínguez-Lozoya & Sergio Cuevas & David Roberto Domínguez & Raúl Ávalos-Zúñiga & Eduardo Ramos, 2021. "Laboratory Characterization of a Liquid Metal MHD Generator for Ocean Wave Energy Conversion," Sustainability, MDPI, vol. 13(9), pages 1-17, April.
    19. Henry M. Zapata & Marcelo A. Perez & Abraham Marquez Alcaide, 2022. "Control of Cascaded Multilevel Converter for Wave Energy Applications," Energies, MDPI, vol. 16(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shadmani, Alireza & Nikoo, Mohammad Reza & Gandomi, Amir H. & Chen, Mingjie & Nazari, Rouzbeh, 2024. "Advancements in optimizing wave energy converter geometry utilizing metaheuristic algorithms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    2. Gianmaria Giannini & Paulo Rosa-Santos & Victor Ramos & Francisco Taveira-Pinto, 2020. "On the Development of an Offshore Version of the CECO Wave Energy Converter," Energies, MDPI, vol. 13(5), pages 1-24, February.
    3. Yue Hong & Irina Temiz & Jianfei Pan & Mikael Eriksson & Cecilia Boström, 2021. "Damping Studies on PMLG-Based Wave Energy Converter under Oceanic Wave Climates," Energies, MDPI, vol. 14(4), pages 1-21, February.
    4. Almaktar, Mohamed & Shaaban, Mohamed, 2021. "Prospects of renewable energy as a non-rivalry energy alternative in Libya," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    5. Anthony Roy & François Auger & Florian Dupriez-Robin & Salvy Bourguet & Quoc Tuan Tran, 2018. "Electrical Power Supply of Remote Maritime Areas: A Review of Hybrid Systems Based on Marine Renewable Energies," Energies, MDPI, vol. 11(7), pages 1-27, July.
    6. Yue, Xuhui & Geng, Dazhou & Chen, Qijuan & Zheng, Yang & Gao, Gongzheng & Xu, Lei, 2021. "2-D lookup table based MPPT: Another choice of improving the generating capacity of a wave power system," Renewable Energy, Elsevier, vol. 179(C), pages 625-640.
    7. Neshat, Mehdi & Nezhad, Meysam Majidi & Sergiienko, Nataliia Y. & Mirjalili, Seyedali & Piras, Giuseppe & Garcia, Davide Astiaso, 2022. "Wave power forecasting using an effective decomposition-based convolutional Bi-directional model with equilibrium Nelder-Mead optimiser," Energy, Elsevier, vol. 256(C).
    8. Kushal A. Prasad & Aneesh A. Chand & Nallapaneni Manoj Kumar & Sumesh Narayan & Kabir A. Mamun, 2022. "A Critical Review of Power Take-Off Wave Energy Technology Leading to the Conceptual Design of a Novel Wave-Plus-Photon Energy Harvester for Island/Coastal Communities’ Energy Needs," Sustainability, MDPI, vol. 14(4), pages 1-55, February.
    9. Shadman, Milad & Guarniz Avalos, Gustavo Omar & Estefen, Segen F., 2021. "On the power performance of a wave energy converter with a direct mechanical drive power take-off system controlled by latching," Renewable Energy, Elsevier, vol. 169(C), pages 157-177.
    10. Joan Pau Sierra & Ricard Castrillo & Marc Mestres & César Mösso & Piero Lionello & Luigi Marzo, 2020. "Impact of Climate Change on Wave Energy Resource in the Mediterranean Coast of Morocco," Energies, MDPI, vol. 13(11), pages 1-19, June.
    11. Sricharan, V.V.S. & Chandrasekaran, Srinivasan, 2021. "Time-domain analysis of a bean-shaped multi-body floating wave energy converter with a hydraulic power take-off using WEC-Sim," Energy, Elsevier, vol. 223(C).
    12. Cai, Qinlin & Zhu, Songye, 2021. "Applying double-mass pendulum oscillator with tunable ultra-low frequency in wave energy converters," Applied Energy, Elsevier, vol. 298(C).
    13. Giannini, Gianmaria & Rosa-Santos, Paulo & Ramos, Victor & Taveira-Pinto, Francisco, 2022. "Wave energy converters design combining hydrodynamic performance and structural assessment," Energy, Elsevier, vol. 249(C).
    14. Mahmoodi, Kumars & Razminia, Abolhassan & Ghassemi, Hassan, 2021. "Optimal control of wave energy converters with non-integer order performance indices: A dynamic programming approach," Renewable Energy, Elsevier, vol. 177(C), pages 1212-1233.
    15. Chen, Zihe & Zhang, Xiantao & Liu, Lei & Tian, Xinliang & Li, Xin, 2024. "Mechanical property identification and performance evaluation of a power take-off combined with a mechanical motion rectifier and a magnetic bistable device," Applied Energy, Elsevier, vol. 353(PA).
    16. Yue Hong & Mikael Eriksson & Cecilia Boström & Jianfei Pan & Yun Liu & Rafael Waters, 2020. "Damping Effect Coupled with the Internal Translator Mass of Linear Generator-Based Wave Energy Converters," Energies, MDPI, vol. 13(17), pages 1-14, August.
    17. Curto, Domenico & Favuzza, Salvatore & Franzitta, Vincenzo & Guercio, Andrea & Amparo Navarro Navia, Milagros & Telaretti, Enrico & Zizzo, Gaetano, 2022. "Grid Stability Improvement Using Synthetic Inertia by Battery Energy Storage Systems in Small Islands," Energy, Elsevier, vol. 254(PC).
    18. Hai-Cheng Zhang & Dao-Lin Xu & Chun-Rong Liu & You-Sheng Wu, 2017. "A Floating Platform with Embedded Wave Energy Harvesting Arrays in Regular and Irregular Seas," Energies, MDPI, vol. 10(9), pages 1-17, September.
    19. He, Guanghua & Liu, Chaogang & Chen, Bangqi & Ghassemi, Hassan & Liu, Lei & Yang, Kaibo & Luan, Zhengxiao, 2023. "Effect of piecewise damping torques and coefficients on power absorption of a point-absorber wave energy converter," Renewable Energy, Elsevier, vol. 219(P1).
    20. Xuhui, Yue & Qijuan, Chen & Zenghui, Wang & Dazhou, Geng & Donglin, Yan & Wen, Jiang & Weiyu, Wang, 2019. "A novel nonlinear state space model for the hydraulic power take-off of a wave energy converter," Energy, Elsevier, vol. 180(C), pages 465-479.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:16:p:3115-:d:257407. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.