IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v224y2024ics0960148124002374.html
   My bibliography  Save this article

The impact of model predictive control structures and constraints on a wave energy converter with hydraulic power take off system

Author

Listed:
  • Hall, Carrie
  • Sheng, Wanan
  • Wu, Yueqi
  • Aggidis, George

Abstract

Ocean waves present a promising renewable energy source, but are challenging to harness given their irregular nature. In order to maximize energy capture on wave energy converters (WECs), power take off (PTO) systems are typically used to effectively adjust the device’s resonant frequency. Optimal control techniques can oversee the PTO operation to maximize overall power output, but optimization in real-time poses difficulties given the wave variability and underlying constraints of the system. This study compares two different model predictive control approaches. One method uses only a model of the hydrodynamics of the WEC while the second has a state space model that includes the WEC hydrodynamics as the dynamics of a hydraulic PTO system. The impact of the PTO constraints, control structure and control prediction horizon on the wave energy converter control performance was explored and quantified for irregular wave conditions. Results show that utilizing a model that includes both the hydrodynamics and PTO dynamics can increase power output by 23% compared to an approach that uses the hydrodynamics only.

Suggested Citation

  • Hall, Carrie & Sheng, Wanan & Wu, Yueqi & Aggidis, George, 2024. "The impact of model predictive control structures and constraints on a wave energy converter with hydraulic power take off system," Renewable Energy, Elsevier, vol. 224(C).
  • Handle: RePEc:eee:renene:v:224:y:2024:i:c:s0960148124002374
    DOI: 10.1016/j.renene.2024.120172
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124002374
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120172?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tunde Aderinto & Hua Li, 2018. "Ocean Wave Energy Converters: Status and Challenges," Energies, MDPI, vol. 11(5), pages 1-26, May.
    2. Li, L. & Gao, Y. & Ning, D.Z. & Yuan, Z.M., 2021. "Development of a constraint non-causal wave energy control algorithm based on artificial intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    3. Aleix Maria-Arenas & Aitor J. Garrido & Eugen Rusu & Izaskun Garrido, 2019. "Control Strategies Applied to Wave Energy Converters: State of the Art," Energies, MDPI, vol. 12(16), pages 1-19, August.
    4. Li, Guang & Belmont, Michael R., 2014. "Model predictive control of sea wave energy converters – Part I: A convex approach for the case of a single device," Renewable Energy, Elsevier, vol. 69(C), pages 453-463.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tawfiq Chekifi & Amine Benmoussa & Moustafa Boukraa, 2024. "Desalination Powered by Renewables: A Challenge and an AI Opportunity," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(14), pages 5419-5461, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tunde Aderinto & Hua Li, 2020. "Effect of Spatial and Temporal Resolution Data on Design and Power Capture of a Heaving Point Absorber," Sustainability, MDPI, vol. 12(22), pages 1-17, November.
    2. Pasta, Edoardo & Faedo, Nicolás & Mattiazzo, Giuliana & Ringwood, John V., 2023. "Towards data-driven and data-based control of wave energy systems: Classification, overview, and critical assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    3. Seyed Milad Mousavi & Majid Ghasemi & Mahsa Dehghan Manshadi & Amir Mosavi, 2021. "Deep Learning for Wave Energy Converter Modeling Using Long Short-Term Memory," Mathematics, MDPI, vol. 9(8), pages 1-16, April.
    4. Raju Ahamed & Kristoffer McKee & Ian Howard, 2022. "A Review of the Linear Generator Type of Wave Energy Converters’ Power Take-Off Systems," Sustainability, MDPI, vol. 14(16), pages 1-42, August.
    5. Yadong Wen & Weijun Wang & Hua Liu & Longbo Mao & Hongju Mi & Wenqiang Wang & Guoping Zhang, 2018. "A Shape Optimization Method of a Specified Point Absorber Wave Energy Converter for the South China Sea," Energies, MDPI, vol. 11(10), pages 1-22, October.
    6. Hong Li & Bo Zhang & Li Qiu & Shiyu Chen & Jianping Yuan & Jianjun Luo, 2019. "Advection-Based Coordinated Control for Wave-Energy Converter Array," Energies, MDPI, vol. 12(18), pages 1-21, September.
    7. Zhang, Yongxing & Huang, Zhicong & Zou, Bowei & Bian, Jing, 2023. "Conceptual design and analysis for a novel parallel configuration-type wave energy converter," Renewable Energy, Elsevier, vol. 208(C), pages 627-644.
    8. Fabian G. Pierart & Matias Rubilar & Jaime Rohten, 2023. "Experimental Validation of Damping Adjustment Method with Generator Parameter Study for Wave Energy Conversion," Energies, MDPI, vol. 16(14), pages 1-14, July.
    9. Lorenzo Ciappi & Lapo Cheli & Irene Simonetti & Alessandro Bianchini & Giampaolo Manfrida & Lorenzo Cappietti, 2020. "Wave-to-Wire Model of an Oscillating-Water-Column Wave Energy Converter and Its Application to Mediterranean Energy Hot-Spots," Energies, MDPI, vol. 13(21), pages 1-28, October.
    10. Li, Liang & Gao, Yan, 2023. "Development of a real-time wave energy control with consideration of control latency," Energy, Elsevier, vol. 277(C).
    11. He, Guanghua & Luan, Zhengxiao & Zhang, Wei & He, Runhua & Liu, Chaogang & Yang, Kaibo & Yang, Changhao & Jing, Penglin & Zhang, Zhigang, 2023. "Review on research approaches for multi-point absorber wave energy converters," Renewable Energy, Elsevier, vol. 218(C).
    12. Mehdi Neshat & Nataliia Y. Sergiienko & Erfan Amini & Meysam Majidi Nezhad & Davide Astiaso Garcia & Bradley Alexander & Markus Wagner, 2020. "A New Bi-Level Optimisation Framework for Optimising a Multi-Mode Wave Energy Converter Design: A Case Study for the Marettimo Island, Mediterranean Sea," Energies, MDPI, vol. 13(20), pages 1-23, October.
    13. Licheri, Fabio & Ghisu, Tiziano & Cambuli, Francesco & Puddu, Pierpaolo, 2022. "Detailed investigation of the local flow-field in a Wells turbine coupled to an OWC simulator," Renewable Energy, Elsevier, vol. 197(C), pages 583-593.
    14. Zhang, Zhenquan & Qin, Jian & Zhang, Yuchen & Huang, Shuting & Liu, Yanjun & Xue, Gang, 2023. "Cooperative model predictive control for Wave Energy Converter arrays," Renewable Energy, Elsevier, vol. 219(P1).
    15. Zou, Shangyan & Abdelkhalik, Ossama, 2020. "Collective control in arrays of wave energy converters," Renewable Energy, Elsevier, vol. 156(C), pages 361-369.
    16. José Carlos Ugaz Peña & Christian Luis Medina Rodríguez & Gustavo O. Guarniz Avalos, 2023. "Study of a New Wave Energy Converter with Perturb and Observe Maximum Power Point Tracking Method," Sustainability, MDPI, vol. 15(13), pages 1-18, July.
    17. Adriano Silva Bastos & Tâmara Rita Costa de Souza & Dieimys Santos Ribeiro & Mirian de Lourdes Noronha Motta Melo & Carlos Barreira Martinez, 2023. "Wave Energy Generation in Brazil: A Georeferenced Oscillating Water Column Inventory," Energies, MDPI, vol. 16(8), pages 1-24, April.
    18. Rafael Guardeño & Agustín Consegliere & Manuel J. López, 2018. "A Study about Performance and Robustness of Model Predictive Controllers in a WEC System," Energies, MDPI, vol. 11(10), pages 1-23, October.
    19. Reza Jafari & Pedram Asef & Mohammad Ardebili & Mohammad Mahdi Derakhshani, 2022. "Linear Permanent Magnet Vernier Generators for Wave Energy Applications: Analysis, Challenges, and Opportunities," Sustainability, MDPI, vol. 14(17), pages 1-35, September.
    20. Gimara Rajapakse & Shantha Jayasinghe & Alan Fleming & Michael Negnevitsky, 2018. "Grid Integration and Power Smoothing of an Oscillating Water Column Wave Energy Converter," Energies, MDPI, vol. 11(7), pages 1-19, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:224:y:2024:i:c:s0960148124002374. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.