IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i9p3338-d808154.html
   My bibliography  Save this article

Control Strategies Applied to a Heat Transfer Loop of a Linear Fresnel Collector

Author

Listed:
  • Alaric Christian Montenon

    (Energy, Environment and Water Research Center, The Cyprus Institute, 20 Konstantinou Kavafi Street, Aglantzia 2121, Cyprus
    These authors contributed equally to this work.)

  • Rowida Meligy

    (Mechatronics Department, Faculty of Engineering, Helwan University, Cairo 11795, Egypt
    These authors contributed equally to this work.)

Abstract

The modelling of Linear Fresnel Collectors (LFCs) is crucial in order to predict accurate performance for annual yields and to define proper commands to design the suitable controller. The ISO 9806 modelling, applied to thermal collectors, presents some gaps especially with concentration collectors including LFCs notably due to the factorisation of the incidence angle modifiers and the fact that they are considered symmetric around the south meridian. The present work details the use of two alternative modellings methodologies based on recorded experimental data on the solar system installed at the Cyprus Institute, in the outskirts of Nicosia, Cyprus. The first modelling is the RealTrackEff, which is an improved ISO9806 modelling, and the second is constructed using the CARNOT blockset in MATLAB/Simulink. Both models include all the elements of the heat transfer fluid loop, i.e., mineral oil, with a tank and a heat-exchanger. First, the open loop’s studies demonstrated that the root mean square on temperature is 1 °C with the RealTrackEff; 2.9 °C with the CARNOT and 6.3 °C with the ISO9806 in comparison to the experimental data. Then, a PID control is applied on the experimental values in order to estimate the impact on the outlet temperature on the absorber and on power generation. Results showed that the error on the estimation of the heat absorbed reaches 32%.

Suggested Citation

  • Alaric Christian Montenon & Rowida Meligy, 2022. "Control Strategies Applied to a Heat Transfer Loop of a Linear Fresnel Collector," Energies, MDPI, vol. 15(9), pages 1-13, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3338-:d:808154
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/9/3338/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/9/3338/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Diego Pulido-Iparraguirre & Loreto Valenzuela & Jesús Fernández-Reche & José Galindo & José Rodríguez, 2019. "Design, Manufacturing and Characterization of Linear Fresnel Reflector’s Facets," Energies, MDPI, vol. 12(14), pages 1-15, July.
    2. Stefania Guarino & Pietro Catrini & Alessandro Buscemi & Valerio Lo Brano & Antonio Piacentino, 2021. "Assessing the Energy-Saving Potential of a Dish-Stirling Con-Centrator Integrated Into Energy Plants in the Tertiary Sector," Energies, MDPI, vol. 14(4), pages 1-23, February.
    3. Jebasingh, V.K. & Herbert, G.M. Joselin, 2016. "A review of solar parabolic trough collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1085-1091.
    4. Alhussein Albarbar & Abdullah Arar, 2019. "Performance Assessment and Improvement of Central Receivers Used for Solar Thermal Plants," Energies, MDPI, vol. 12(16), pages 1-27, August.
    5. Isidoro Lillo & Elena Pérez & Sara Moreno & Manuel Silva, 2017. "Process Heat Generation Potential from Solar Concentration Technologies in Latin America: The Case of Argentina," Energies, MDPI, vol. 10(3), pages 1-22, March.
    6. Abbas, R. & Sebastián, A. & Montes, M.J. & Valdés, M., 2018. "Optical features of linear Fresnel collectors with different secondary reflector technologies," Applied Energy, Elsevier, vol. 232(C), pages 386-397.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Enas Taha Sayed & Abdul Ghani Olabi & Abdul Hai Alami & Ali Radwan & Ayman Mdallal & Ahmed Rezk & Mohammad Ali Abdelkareem, 2023. "Renewable Energy and Energy Storage Systems," Energies, MDPI, vol. 16(3), pages 1-26, February.
    2. Yu Qiu & Erqi E & Qing Li, 2023. "Triple-Objective Optimization of SCO 2 Brayton Cycles for Next-Generation Solar Power Tower," Energies, MDPI, vol. 16(14), pages 1-19, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miguel J. Prieto & Juan Á. Martínez & Rogelio Peón & Lourdes Á. Barcia & Fernando Nuño, 2017. "On the Convenience of Using Simulation Models to Optimize the Control Strategy of Molten-Salt Heat Storage Systems in Solar Thermal Power Plants," Energies, MDPI, vol. 10(7), pages 1-17, July.
    2. López-Alvarez, José A. & Larraneta, Miguel & Silva-Pérez, Manuel A. & Lillo-Bravo, Isidoro, 2020. "Impact of the variation of the receiver glass envelope transmittance as a function of the incidence angle in the performance of a linear Fresnel collector," Renewable Energy, Elsevier, vol. 150(C), pages 607-615.
    3. Ma, Jun & Wang, Cheng-Long & Zhou, Yuan & Wang, Rui-Dong, 2021. "Optimized design of a linear Fresnel collector with a compound parabolic secondary reflector," Renewable Energy, Elsevier, vol. 171(C), pages 141-148.
    4. Tuncer, Azim Doğuş & Khanlari, Ataollah, 2023. "Improving the performance of a triple-flow solar air collector using recyclable aluminum cans as extended heat transfer surfaces: An energetic, exergetic, economic and environmental survey," Energy, Elsevier, vol. 282(C).
    5. Lozano-Medina, Alexis & Manzano, Luis & Marcos, José D. & Blanco-Marigorta, Ana M., 2019. "Design of a concentrating solar thermal collector installation for a hotel complex in Gran Canaria," Energy, Elsevier, vol. 183(C), pages 803-811.
    6. Michela Lanchi & Jafar Al-Zaili & Valeria Russo & Massimo Falchetta & Marco Montecchi & Lukas Aichmayer, 2022. "A Quasi-Steady State Model of a Solar Parabolic Dish Micro Gas Turbine Demonstration Plant," Energies, MDPI, vol. 15(3), pages 1-24, January.
    7. Aikifa Raza & Jin-You Lu & Safa Alzaim & Hongxia Li & TieJun Zhang, 2018. "Novel Receiver-Enhanced Solar Vapor Generation: Review and Perspectives," Energies, MDPI, vol. 11(1), pages 1-29, January.
    8. Zuo, Yuhang & Li, Yawei & Zhou, Hao, 2022. "Numerical study on preheating process of molten salt tower receiver in windy conditions," Energy, Elsevier, vol. 251(C).
    9. Li, Xueling & Chang, Huawei & Duan, Chen & Zheng, Yao & Shu, Shuiming, 2019. "Thermal performance analysis of a novel linear cavity receiver for parabolic trough solar collectors," Applied Energy, Elsevier, vol. 237(C), pages 431-439.
    10. Kumaresan, G. & Sudhakar, P. & Santosh, R. & Velraj, R., 2017. "Experimental and numerical studies of thermal performance enhancement in the receiver part of solar parabolic trough collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1363-1374.
    11. Liu, Shuaishuai & Yang, Bin & Hou, Yutian & Yu, Xiaohui, 2022. "Effects of geometric configurations on the thermal-mechanical properties of parabolic trough receivers based on coupled optical-thermal-stress model," Renewable Energy, Elsevier, vol. 199(C), pages 929-942.
    12. Moudakkar, Touria & El Hallaoui, Z. & Vaudreuil, S. & Bounahmidi, T., 2019. "Modeling and performance analysis of a PTC for industrial phosphate flash drying," Energy, Elsevier, vol. 166(C), pages 1134-1148.
    13. Alamdari, Pedram & Khatamifar, Mehdi & Lin, Wenxian, 2024. "Heat loss analysis review: Parabolic trough and linear Fresnel collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    14. Francesco Calise & Massimo Dentice d’Accadia & Maria Vicidomini, 2022. "Integrated Solar Thermal Systems," Energies, MDPI, vol. 15(10), pages 1-8, May.
    15. Andrea Gilioli & Francesco Cadini & Luca Abbiati & Giulio Angelo Guido Solero & Massimo Fossati & Andrea Manes & Lino Carnelli & Carla Lazzari & Stefano Cardamone & Marco Giglio, 2021. "Finite Element Modelling of a Parabolic Trough Collector for Concentrated Solar Power," Energies, MDPI, vol. 14(1), pages 1-26, January.
    16. Romero-Ramos, J.A. & Gil, J.D. & Cardemil, J.M. & Escobar, R.A. & Arias, I. & Pérez-García, M., 2023. "A GIS-AHP approach for determining the potential of solar energy to meet the thermal demand in southeastern Spain productive enclaves," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    17. Memme, Samuele & Fossa, Marco, 2023. "Ray tracing analysis of linear Fresnel concentrators and the effect of plant azimuth on their optical efficiency," Renewable Energy, Elsevier, vol. 216(C).
    18. Wang, Qiliang & Li, Guiqiang & Cao, Jingyu & Hu, Mingke & Pei, Gang & Yang, Hongxing, 2022. "An analytical study on optimal spectral characters of solar absorbing coating and thermal performance potential of solar power tower," Renewable Energy, Elsevier, vol. 200(C), pages 1300-1315.
    19. Osorio, Julian D. & Rivera-Alvarez, Alejandro, 2019. "Performance analysis of Parabolic Trough Collectors with Double Glass Envelope," Renewable Energy, Elsevier, vol. 130(C), pages 1092-1107.
    20. Linyuan Shang & Yanjiang Wang & Xiaogang Deng & Yuping Cao & Ping Wang & Yuhong Wang, 2019. "An Enhanced Method to Assess MPC Performance Based on Multi-Step Slow Feature Analysis," Energies, MDPI, vol. 12(19), pages 1-18, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3338-:d:808154. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.