IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i7p1862-d158344.html
   My bibliography  Save this article

An Improved Centralized Control Structure for Compensation of Voltage Distortions in Inverter-Based Microgrids

Author

Listed:
  • Morteza Afrasiabi

    (Department of Electrical Engineering, Lorestan University, Khoramabad P. O. Box 465, Iran)

  • Esmaeel Rokrok

    (Department of Electrical Engineering, Lorestan University, Khoramabad P. O. Box 465, Iran)

Abstract

Recently, increased use of non-linear loads has intensified the harmonic distortion and voltage unbalance in distribution systems. Inverter Based Distributed Generators (IBDGs) can be employed as distributed compensators to improve the power quality, as well as to supply distribution systems. In this paper, an enhanced hierarchical control scheme for the compensation of voltage disturbance in an AC Micro Grid (MG) that includes of two control levels is proposed. The secondary control level is performed by a centralized controller. Data of voltage harmonics and voltage unbalance at the MG Sensitive Load Bus (SLB) is sent to the centralized controller by a measurement unit. A general case with a combined voltage harmonic and unbalance distortion is considered. The compensation coefficients for IBDG units are computed by the centralized controller, and reference commands are sent to the local controllers of the IBDG units that act as a primary level of control. In the secondary control level, harmonic analysis is performed for the MG in order to provide a guide for properly assigning the harmonics and unbalance compensation priorities to IBDGs at different locations in the distribution system. Some buses have more participation in exciting the MG resonance modes; therefore, larger harmonic compensation factors are considered for the IBDGs that are near to these buses. For other IBDGs, the voltage unbalance compensation factor is selected bigger. The control system of the IBDGs mainly includes a current controller, a virtual damping resistor loop, and a load compensation block. Effectiveness of the proposed control scheme is demonstrated through simulation studies.

Suggested Citation

  • Morteza Afrasiabi & Esmaeel Rokrok, 2018. "An Improved Centralized Control Structure for Compensation of Voltage Distortions in Inverter-Based Microgrids," Energies, MDPI, vol. 11(7), pages 1-13, July.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1862-:d:158344
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/7/1862/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/7/1862/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Savaghebi, Mehdi & Vasquez, Juan C. & Jalilian, Alireza & Guerrero, Josep M. & Lee, Tzung-Lin, 2013. "Selective compensation of voltage harmonics in grid-connected microgrids," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 91(C), pages 211-228.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anton Petrochenkov & Nikolai Pavlov & Nikolai Bachev & Alexander Romodin & Iurii Butorin & Nikolai Kolesnikov, 2023. "Ensuring Power Balance in the Electrical Grid of an Oil-and-Gas-Producing Enterprise with Distributed Generation Using Associated Petroleum Gas," Sustainability, MDPI, vol. 15(19), pages 1-15, September.
    2. Yao Liu & Lin Guan & Fang Guo & Jianping Zheng & Jianfu Chen & Chao Liu & Josep M. Guerrero, 2019. "A Reactive Power-Voltage Control Strategy of an AC Microgrid Based on Adaptive Virtual Impedance," Energies, MDPI, vol. 12(16), pages 1-15, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arahal, M.R. & Barrero, F. & Ortega, M.G. & Martin, C., 2016. "Harmonic analysis of direct digital control of voltage inverters," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 130(C), pages 155-166.
    2. Rasool M. Imran & Shaorong Wang, 2018. "Enhanced Two-Stage Hierarchical Control for a Dual Mode WECS-Based Microgrid," Energies, MDPI, vol. 11(5), pages 1-19, May.
    3. Mahdavi, Sadegh & Bayat, Alireza & Mirzaei, Farzad, 2019. "Economic Operation of Grid-Connected Microgrid By Multiverse Optimization Algorithm," MPRA Paper 95893, University Library of Munich, Germany.
    4. Jamaledini, Ashkan & Khazaei, Ehsan & Bitaraf, Mohammd, 2019. "Solving the Grid-Connected Microgrid Operation by JAYA Algorithm," MPRA Paper 94277, University Library of Munich, Germany.
    5. Rekik, Mouna & Abdelkafi, Achraf & Krichen, Lotfi, 2015. "A micro-grid ensuring multi-objective control strategy of a power electrical system for quality improvement," Energy, Elsevier, vol. 88(C), pages 351-363.
    6. Seyyed Yousef Mousazadeh Mousavi & Alireza Jalilian & Mehdi Savaghebi & Josep M. Guerrero, 2017. "Flexible Compensation of Voltage and Current Unbalance and Harmonics in Microgrids," Energies, MDPI, vol. 10(10), pages 1-19, October.
    7. Seruca, Manuel & Mota, Andrade & Rodrigues, David, 2019. "Solving the Economic Scheduling of Grid-Connected Microgrid Based on the Strength Pareto Approach," MPRA Paper 95391, University Library of Munich, Germany.
    8. Jamaledini, Ashkan & Khazaei, Ehsan & Bitaraf, Mohammad, 2019. "Solving the Grid-Connected Microgrid Operation by Teaching Learning Based Optimization Algorithm," MPRA Paper 94276, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1862-:d:158344. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.