IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i15p2979-d254022.html
   My bibliography  Save this article

A Downdraft Fixed-Bed Biomass Gasification System with Integrated Products of Electricity, Heat, and Biochar: The Key Features and Initial Commercial Performance

Author

Listed:
  • Yong Huang

    (College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China)

  • Yiling Wan

    (College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China)

  • Shasha Liu

    (College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China)

  • Yimeng Zhang

    (College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China)

  • Huanhuan Ma

    (College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China)

  • Shu Zhang

    (College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China)

  • Jianbin Zhou

    (College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China)

Abstract

Biomass, as a renewable and clean energy resource, plays a vital role in energy security and greenhouse gas reduction across the world. This paper reports on our newly established technology: a downdraft fixed-bed biomass gasification system using nut shells (mainly apricot kernel shells) for electricity generation, heating and partially activated carbon production at the same time. Particularly, the key features of the gasification reactor will be presented in detail. In the commercial plant (3 MW scale) located in Hebei province, China, the typical energy conversion from apricot kernel shell gasification is as follows: 47% syngas, 44% char (partially activated carbon), 5% hot water, and 4% energy loss. The main gasification temperature is 600–800 °C, while the activation zone is 850–900 °C. The commercial system has currently been in operation for 4 years. Considering the partially activated carbon as a stable carbon carrier, the whole system features negative CO 2 emissions.

Suggested Citation

  • Yong Huang & Yiling Wan & Shasha Liu & Yimeng Zhang & Huanhuan Ma & Shu Zhang & Jianbin Zhou, 2019. "A Downdraft Fixed-Bed Biomass Gasification System with Integrated Products of Electricity, Heat, and Biochar: The Key Features and Initial Commercial Performance," Energies, MDPI, vol. 12(15), pages 1-9, August.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:15:p:2979-:d:254022
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/15/2979/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/15/2979/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Feng, Dongdong & Zhang, Yu & Zhao, Yijun & Sun, Shaozeng, 2018. "Catalytic effects of ion-exchangeable K+ and Ca2+ on rice husk pyrolysis behavior and its gas–liquid–solid product properties," Energy, Elsevier, vol. 152(C), pages 166-177.
    2. Sansaniwal, S.K. & Rosen, M.A. & Tyagi, S.K., 2017. "Global challenges in the sustainable development of biomass gasification: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 23-43.
    3. Shen, Yafei & Yoshikawa, Kunio, 2013. "Recent progresses in catalytic tar elimination during biomass gasification or pyrolysis—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 371-392.
    4. Susastriawan, A.A.P. & Saptoadi, Harwin & Purnomo,, 2017. "Small-scale downdraft gasifiers for biomass gasification: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 989-1003.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marco Mancini & Andreas Schwabauer, 2023. "On the Thermal Stability of a Counter-Current Fixed-Bed Gasifier," Energies, MDPI, vol. 16(9), pages 1-36, April.
    2. Giulio Allesina & Simone Pedrazzi, 2021. "Barriers to Success: A Technical Review on the Limits and Possible Future Roles of Small Scale Gasifiers," Energies, MDPI, vol. 14(20), pages 1-23, October.
    3. Guiyan Zang & Jianan Zhang & Junxi Jia & Nathaniel Weger & Albert Ratner, 2019. "Clean Poultry Energy System Design Based on Biomass Gasification Technology: Thermodynamic and Economic Analysis," Energies, MDPI, vol. 12(22), pages 1-18, November.
    4. Ali Abdelaal & Vittoria Benedetti & Audrey Villot & Francesco Patuzzi & Claire Gerente & Marco Baratieri, 2023. "Innovative Pathways for the Valorization of Biomass Gasification Char: A Systematic Review," Energies, MDPI, vol. 16(10), pages 1-24, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Inayat, Abrar & Raza, Mohsin, 2019. "District cooling system via renewable energy sources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 360-373.
    2. Flori, Giacomo & Frigo, Stefano & Barontini, Federica & Gabbrielli, Roberto & Sica, Pietro, 2024. "Experimental assessment of oxy-CO2 gasification strategy with woody biomass," Renewable Energy, Elsevier, vol. 228(C).
    3. Díaz González, Carlos A. & Pacheco Sandoval, Leonardo, 2020. "Sustainability aspects of biomass gasification systems for small power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    4. Unyaphan, Siriwat & Tarnpradab, Thanyawan & Takahashi, Fumitake & Yoshikawa, Kunio, 2017. "Improvement of tar removal performance of oil scrubber by producing syngas microbubbles," Applied Energy, Elsevier, vol. 205(C), pages 802-812.
    5. Vlachokostas, Ch. & Michailidou, A.V. & Achillas, Ch., 2021. "Multi-Criteria Decision Analysis towards promoting Waste-to-Energy Management Strategies: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    6. Sethu Sundar Pethaiah & Kishor Kumar Sadasivuni & Arunkumar Jayakumar & Deepalekshmi Ponnamma & Chandra Sekhar Tiwary & Gangadharan Sasikumar, 2020. "Methanol Electrolysis for Hydrogen Production Using Polymer Electrolyte Membrane: A Mini-Review," Energies, MDPI, vol. 13(22), pages 1-17, November.
    7. Jun Sheng Teh & Yew Heng Teoh & Heoy Geok How & Thanh Danh Le & Yeoh Jun Jie Jason & Huu Tho Nguyen & Dong Lin Loo, 2021. "The Potential of Sustainable Biomass Producer Gas as a Waste-to-Energy Alternative in Malaysia," Sustainability, MDPI, vol. 13(7), pages 1-31, April.
    8. Pan, Xuwei & Wu, Yan & Li, Tingzhen & Lan, Guoxin & Shen, Jia & Yu, Yue & Xue, Ping & Chen, Dan & Wang, Maoqing & Fu, Chuan, 2023. "A study of co-pyrolysis of sewage sludge and rice husk for syngas production based on a cyclic catalytic integrated process system," Renewable Energy, Elsevier, vol. 215(C).
    9. Patrik Šuhaj & Jakub Husár & Juma Haydary, 2020. "Gasification of RDF and Its Components with Tire Pyrolysis Char as Tar-Cracking Catalyst," Sustainability, MDPI, vol. 12(16), pages 1-14, August.
    10. He-Ming Dong & Qian Du & Dun Li & Zhao-Yang Cui & Jian-Min Gao & Shao-Hua Wu, 2019. "Impacts of Organic Structures and Inherent Minerals of Coal on Soot Formation during Pyrolysis," Energies, MDPI, vol. 12(23), pages 1-16, November.
    11. Zhang, Shiyu & Bie, Xuan & Qian, Zheng & Wu, Mengna & Li, Kaile & Li, Qinghai & Zhang, Yanguo & Zhou, Hui, 2024. "Synergistic interactions between cellulose and plastics (PET, HDPE, and PS) during CO2 gasification-catalytic reforming on Ni/CeO2 nanorod catalyst," Applied Energy, Elsevier, vol. 361(C).
    12. Elhambakhsh, Abbas & Van Duc Long, Nguyen & Lamichhane, Pradeep & Hessel, Volker, 2023. "Recent progress and future directions in plasma-assisted biomass conversion to hydrogen," Renewable Energy, Elsevier, vol. 218(C).
    13. Tera, Ibrahim & Zhang, Shengan & Liu, Guilian, 2024. "A conceptual hydrogen, heat and power polygeneration system based on biomass gasification, SOFC and waste heat recovery units: Energy, exergy, economic and emergy (4E) assessment," Energy, Elsevier, vol. 295(C).
    14. Fan, Yuyang & Tippayawong, Nakorn & Wei, Guoqiang & Huang, Zhen & Zhao, Kun & Jiang, Liqun & Zheng, Anqing & Zhao, Zengli & Li, Haibin, 2020. "Minimizing tar formation whilst enhancing syngas production by integrating biomass torrefaction pretreatment with chemical looping gasification," Applied Energy, Elsevier, vol. 260(C).
    15. Manolis, E.N. & Zagas, T.D. & Karetsos, G.K. & Poravou, C.A., 2019. "Ecological restrictions in forest biomass extraction for a sustainable renewable energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 290-297.
    16. Fanta Barry & Marie Sawadogo & Maïmouna Bologo (Traoré) & Igor W. K. Ouédraogo & Thomas Dogot, 2021. "Key Barriers to the Adoption of Biomass Gasification in Burkina Faso," Sustainability, MDPI, vol. 13(13), pages 1-14, June.
    17. Nzihou, Ange & Stanmore, Brian & Sharrock, Patrick, 2013. "A review of catalysts for the gasification of biomass char, with some reference to coal," Energy, Elsevier, vol. 58(C), pages 305-317.
    18. Gabbrielli, Roberto & Barontini, Federica & Frigo, Stefano & Bressan, Luigi, 2022. "Numerical analysis of bio-methane production from biomass-sewage sludge oxy-steam gasification and methanation process," Applied Energy, Elsevier, vol. 307(C).
    19. Bello, Yusuf H. & Ahmed, Mahmoud A. & Ookawara, Shinichi & Elwardany, Ahmed E., 2022. "Numerical and experimental investigation on air distributor design of fluidized bed reactor of sawdust pyrolysis," Energy, Elsevier, vol. 239(PC).
    20. Martínez, Laura V. & Rubiano, Jairo E. & Figueredo, Manuel & Gómez, María F., 2020. "Experimental study on the performance of gasification of corncobs in a downdraft fixed bed gasifier at various conditions," Renewable Energy, Elsevier, vol. 148(C), pages 1216-1226.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:15:p:2979-:d:254022. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.