IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i7p1378-d221418.html
   My bibliography  Save this article

Anti-Interference and Location Performance for Turn-to-Turn Short Circuit Detection in Turbo-Generator Rotor Windings

Author

Listed:
  • Yucai Wu

    (North China Electric Power University Dept. of Electrical Engineering State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, Baoding 071003, China)

  • Guanhua Ma

    (North China Electric Power University Dept. of Electrical Engineering State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, Baoding 071003, China)

Abstract

Online and location detection of rotor winding inter-turn short circuits are an important direction in the field of fault diagnosis in turbo-generators. This area is facing many difficulties and challenges. This study is based on the principles associated with the U-shaped detection coil method. Compared with dynamic eccentricity faults, the characteristics of the variations in the main magnetic field after a turn-to-turn short circuit in rotor windings were analyzed and the unique characteristics were extracted. We propose that the degree of a turn-to-turn short circuit can be judged by the difference in the induction voltage of the double U-shaped detection coils mounted on the stator core. Here, the faulty slot position was determined by the local convex point formed by the difference in the induced voltage. Numerical simulation was used here to determine the induced voltage characteristics in the double U-shaped coils caused by the turn-to-turn short circuit fault. We analyzed the dynamic eccentricity fault as well as combined the fault of a turn-to-turn short circuit and dynamic eccentricity. Finally, we demonstrate the positive anti-interference performance associated with this fault detection method. This new online detection method is satisfactory in terms of sensitivity, speed, and positioning, and overall performance is superior to the traditional online detection methods.

Suggested Citation

  • Yucai Wu & Guanhua Ma, 2019. "Anti-Interference and Location Performance for Turn-to-Turn Short Circuit Detection in Turbo-Generator Rotor Windings," Energies, MDPI, vol. 12(7), pages 1-18, April.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:7:p:1378-:d:221418
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/7/1378/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/7/1378/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jin-Cheol Park & Soo-Hwan Park & Jae-Hyun Kim & Soo-Gyung Lee & Geun-Ho Lee & Myung-Seop Lim, 2021. "Diagnosis and Robust Design Optimization of SPMSM Considering Back EMF and Cogging Torque due to Static Eccentricity," Energies, MDPI, vol. 14(10), pages 1-19, May.
    2. M. Asghar Khan & Tao Zheng, 2019. "Modelling and Design of a Low-Level Turn-to-Turn Fault Protection Scheme for Extra-High Voltage Magnetically Controlled Shunt Reactor," Energies, MDPI, vol. 12(24), pages 1-20, December.
    3. Carlos Candelo-Zuluaga & Jordi-Roger Riba & Carlos López-Torres & Antoni Garcia, 2019. "Detection of Inter-Turn Faults in Multi-Phase Ferrite-PM Assisted Synchronous Reluctance Machines," Energies, MDPI, vol. 12(14), pages 1-15, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:7:p:1378-:d:221418. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.