IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v143y2021ics1364032121002100.html
   My bibliography  Save this article

A comparative state-of-technology review and future directions for rare earth element separation

Author

Listed:
  • Opare, Emmanuel Ohene
  • Struhs, Ethan
  • Mirkouei, Amin

Abstract

Growing consumption of rare earth elements (REEs) due to their critical roles in various sectors (e.g., healthcare, energy, transportation, and electronics) has gained attention and stimulated research efforts in industry and academic communities. This study provides an overview of the existing REE production and recovery pathways, identifies critical challenges of the current techniques, and highlights opportunities for multidisciplinary research to achieve more effective solutions. A comprehensive classification of REE separation techniques is presented through narrative and systematic literature reviews, including qualitative analysis and classic bibliometric techniques, to assess the usefulness of identified methodologies and approaches. It is found that the top three most explored and mature separation techniques in various phases (solid and liquid) between 2015 and 2020 are leaching, solvent extraction, and plasma; and the top three study fields are chemistry, engineering, and metallurgy. It is further found that the dominant REE separation technique across over 40 fields of research is the use of acids, bases, ionic liquids, and salts for leaching REEs. It is concluded that agromining approach, using hyperaccumulator plants capable of absorbing REEs through their roots and leaves, can be a practical approach for sustainable REEs recovery from secondary sources and end-of-life products, such as electronic devices.

Suggested Citation

  • Opare, Emmanuel Ohene & Struhs, Ethan & Mirkouei, Amin, 2021. "A comparative state-of-technology review and future directions for rare earth element separation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
  • Handle: RePEc:eee:rensus:v:143:y:2021:i:c:s1364032121002100
    DOI: 10.1016/j.rser.2021.110917
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121002100
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.110917?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Riba, Jordi-Roger & López-Torres, Carlos & Romeral, Luís & Garcia, Antoni, 2016. "Rare-earth-free propulsion motors for electric vehicles: A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 367-379.
    2. Zhang, Kuangyuan & Kleit, Andrew N. & Nieto, Antonio, 2017. "An economics strategy for criticality – Application to rare earth element Yttrium in new lighting technology and its sustainable availability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 899-915.
    3. Amato, A. & Becci, A. & Birloaga, I. & De Michelis, I. & Ferella, F. & Innocenzi, V. & Ippolito, N.M. & Pillar Jimenez Gomez, C. & Vegliò, F. & Beolchini, F., 2019. "Sustainability analysis of innovative technologies for the rare earth elements recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 106(C), pages 41-53.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. de Oliveira, R.P. & Benvenuti, J. & Espinosa, D.C.R., 2021. "A review of the current progress in recycling technologies for gallium and rare earth elements from light-emitting diodes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    2. Joseph G. O’Connell-Danes & Bryne T. Ngwenya & Carole A. Morrison & Jason B. Love, 2022. "Selective separation of light rare-earth elements by supramolecular encapsulation and precipitation," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    3. Alistair F. Holdsworth & Harry Eccles & Clint A. Sharrad & Kathryn George, 2023. "Spent Nuclear Fuel—Waste or Resource? The Potential of Strategic Materials Recovery during Recycle for Sustainability and Advanced Waste Management," Waste, MDPI, vol. 1(1), pages 1-15, January.
    4. Hu, Xiaoqian & Sun, Boxue & Wang, Chao & Lim, Ming K. & Wang, Peng & Geng, Xinyi & Yao, Cuiyou & Chen, Wei-Qiang, 2023. "Impacts of China’s exports decline in rare earth primary materials from a trade network-based perspective," Resources Policy, Elsevier, vol. 81(C).
    5. Brown, Rebecca M. & Mirkouei, Amin & Reed, David & Thompson, Vicki, 2023. "Current nature-based biological practices for rare earth elements extraction and recovery: Bioleaching and biosorption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    6. Tao Jiang & Sarabjot Singh & Kathleen A. Dunn & Yanna Liang, 2022. "Optimizing Leaching of Rare Earth Elements from Red Mud and Spent Fluorescent Lamp Phosphors Using Levulinic Acid," Sustainability, MDPI, vol. 14(15), pages 1-16, August.
    7. Kumar, Anil & Shemi, Alan & Chipise, Liberty & Moodley, Sanchia & Yah, Clarence S. & Ndlovu, Sehliselo, 2023. "Can microbial Bio-CN be a sustainable alternative to the chemical cyanidation of precious metals? An update and way forward," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    8. Madaleno, Mara & Taskin, Dilvin & Dogan, Eyup & Tzeremes, Panayiotis, 2023. "A dynamic connectedness analysis between rare earth prices and renewable energy," Resources Policy, Elsevier, vol. 85(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Idiano D’Adamo & Paolo Rosa, 2019. "A Structured Literature Review on Obsolete Electric Vehicles Management Practices," Sustainability, MDPI, vol. 11(23), pages 1-17, December.
    2. Amato, A. & Becci, A. & Birloaga, I. & De Michelis, I. & Ferella, F. & Innocenzi, V. & Ippolito, N.M. & Pillar Jimenez Gomez, C. & Vegliò, F. & Beolchini, F., 2019. "Sustainability analysis of innovative technologies for the rare earth elements recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 106(C), pages 41-53.
    3. Bonfante, Mariele Canal & Raspini, Jéssica Prats & Fernandes, Ivan Belo & Fernandes, Suélen & Campos, Lucila M.S. & Alarcon, Orestes Estevam, 2021. "Achieving Sustainable Development Goals in rare earth magnets production: A review on state of the art and SWOT analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    4. Markel Fernandez & Andres Sierra-Gonzalez & Endika Robles & Iñigo Kortabarria & Edorta Ibarra & Jose Luis Martin, 2020. "New Modulation Technique to Mitigate Common Mode Voltage Effects in Star-Connected Five-Phase AC Drives," Energies, MDPI, vol. 13(3), pages 1-19, January.
    5. Zhou, Mei-Jing & Huang, Jian-Bai & Chen, Jin-Yu, 2022. "Time and frequency spillovers between political risk and the stock returns of China's rare earths," Resources Policy, Elsevier, vol. 75(C).
    6. Cha, Kyoung-Soo & Kim, Dong-Min & Jung, Young-Hoon & Lim, Myung-Seop, 2020. "Wound field synchronous motor with hybrid circuit for neighborhood electric vehicle traction improving fuel economy," Applied Energy, Elsevier, vol. 263(C).
    7. Yujun Shi & Linni Jian, 2018. "A Novel Dual-Permanent-Magnet-Excited Machine with Flux Strengthening Effect for Low-Speed Large-Torque Applications," Energies, MDPI, vol. 11(1), pages 1-17, January.
    8. Wen, Jianping & Zhao, Dan & Zhang, Chuanwei, 2020. "An overview of electricity powered vehicles: Lithium-ion battery energy storage density and energy conversion efficiency," Renewable Energy, Elsevier, vol. 162(C), pages 1629-1648.
    9. Depraiter, Lisa & Goutte, Stephane, 2023. "The role and challenges of rare earths in the energy transition," Resources Policy, Elsevier, vol. 86(PB).
    10. Ma, Shuai & Lin, Meng & Lin, Tzu-En & Lan, Tian & Liao, Xun & Maréchal, François & Van herle, Jan & Yang, Yongping & Dong, Changqing & Wang, Ligang, 2021. "Fuel cell-battery hybrid systems for mobility and off-grid applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    11. Na Dong & Yanting Fu & Feng Xiong & Lujie Li & Yibin Ao & Igor Martek, 2019. "Sustainable Construction Project Management (SCPM) Evaluation—A Case Study of the Guangzhou Metro Line-7, PR China," Sustainability, MDPI, vol. 11(20), pages 1-17, October.
    12. Yeongmin Kim & Wongee Chun & Kuan Chen, 2017. "Thermal-Flow Analysis of a Simple LTD (Low-Temperature-Differential) Heat Engine," Energies, MDPI, vol. 10(4), pages 1-16, April.
    13. Yang, Chao & Sun, Tonglin & Wang, Weida & Li, Ying & Zhang, Yuhang & Zha, Mingjun, 2024. "Regenerative braking system development and perspectives for electric vehicles: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 198(C).
    14. de Oliveira, R.P. & Benvenuti, J. & Espinosa, D.C.R., 2021. "A review of the current progress in recycling technologies for gallium and rare earth elements from light-emitting diodes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    15. Yupei Du & Wenju Wang & Qian Lu & Ziyang Li, 2020. "A DPSIR-TODIM Model Security Evaluation of China’s Rare Earth Resources," IJERPH, MDPI, vol. 17(19), pages 1-24, September.
    16. Proelss, Juliane & Schweizer, Denis & Seiler, Volker, 2020. "The economic importance of rare earth elements volatility forecasts," International Review of Financial Analysis, Elsevier, vol. 71(C).
    17. Daizhong Su & Jose L. Casamayor & Xuemin Xu, 2021. "An Integrated Approach for Eco-Design and Its Application in LED Lighting Product Development," Sustainability, MDPI, vol. 13(2), pages 1-23, January.
    18. Valero, Alicia & Valero, Antonio & Calvo, Guiomar & Ortego, Abel, 2018. "Material bottlenecks in the future development of green technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 178-200.
    19. Sofia Kontos & Anar Ibrayeva & Jennifer Leijon & Gustav Mörée & Anna E. Frost & Linus Schönström & Klas Gunnarsson & Peter Svedlindh & Mats Leijon & Sandra Eriksson, 2020. "An Overview of MnAl Permanent Magnets with a Study on Their Potential in Electrical Machines," Energies, MDPI, vol. 13(21), pages 1-14, October.
    20. Fang, Debin & Zhao, Chaoyang & Yu, Qian, 2018. "Government regulation of renewable energy generation and transmission in China’s electricity market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 775-793.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:143:y:2021:i:c:s1364032121002100. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.