IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v168y2022ics1364032122006694.html
   My bibliography  Save this article

Design optimization of switched reluctance machines for performance and reliability enhancements: A review

Author

Listed:
  • Diao, Kaikai
  • Sun, Xiaodong
  • Bramerdorfer, Gerd
  • Cai, Yingfeng
  • Lei, Gang
  • Chen, Long

Abstract

Switched reluctance machines (SRMs) provide a potential candidate and a feasible solution with increased interest for industrial applications due to their simple and rigid structure without permanent magnets, low manufacturing cost, excellent power-speed characteristics, and high reliability. However, the nonlinear inductance/flux linkage characteristics caused by the double-salient structure of SRM have created the challenges like high torque ripple and vibration. To solve this problem, a significant number of research works focus on the design and optimization of SRMs. Accordingly, this paper presents an in-depth literature review on the status and potential trends of design optimization techniques for SRMs, including design theory, electromagnetic and thermal modeling methods, novel topologies, optimization classifications, and techniques for optimization efficiency and effects. Existing approaches regarding the above aspects of SRMs are extensively discussed and comprehensively summarized. In addition, some essential trends in design optimization development are presented and highlighted as future perspectives. All the highlighted insights and recommendations of this review will hopefully lead to increasing efforts toward the performance and reliability enhancements of SRMs for future applications.

Suggested Citation

  • Diao, Kaikai & Sun, Xiaodong & Bramerdorfer, Gerd & Cai, Yingfeng & Lei, Gang & Chen, Long, 2022. "Design optimization of switched reluctance machines for performance and reliability enhancements: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
  • Handle: RePEc:eee:rensus:v:168:y:2022:i:c:s1364032122006694
    DOI: 10.1016/j.rser.2022.112785
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032122006694
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2022.112785?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qinghai Zhao & Xiaokai Chen & Zheng-Dong Ma & Yi Lin, 2015. "Robust Topology Optimization Based on Stochastic Collocation Methods under Loading Uncertainties," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-14, August.
    2. Riba, Jordi-Roger & López-Torres, Carlos & Romeral, Luís & Garcia, Antoni, 2016. "Rare-earth-free propulsion motors for electric vehicles: A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 367-379.
    3. Danikas, Michael G. & Karlis, Athanasios, 2011. "A review on electrical machines insulation aging and its relation to the power electronics arrangements with emphasis on wind turbine generators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1748-1752, May.
    4. Saidur, R., 2010. "A review on electrical motors energy use and energy savings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 877-898, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feng, Liyun & Sun, Xiaodong & Bramerdorfer, Gerd & Zhu, Zhen & Cai, Yingfeng & Diao, Kaikai & Chen, Long, 2024. "A review on control techniques of switched reluctance motors for performance improvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yoon, Hae-Sung & Kim, Eun-Seob & Kim, Min-Soo & Lee, Jang-Yeob & Lee, Gyu-Bong & Ahn, Sung-Hoon, 2015. "Towards greener machine tools – A review on energy saving strategies and technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 870-891.
    2. Miguel Castro Oliveira & Muriel Iten & Pedro L. Cruz & Helena Monteiro, 2020. "Review on Energy Efficiency Progresses, Technologies and Strategies in the Ceramic Sector Focusing on Waste Heat Recovery," Energies, MDPI, vol. 13(22), pages 1-24, November.
    3. Md Junayed Hasan & Jong-Myon Kim, 2019. "Fault Detection of a Spherical Tank Using a Genetic Algorithm-Based Hybrid Feature Pool and k-Nearest Neighbor Algorithm," Energies, MDPI, vol. 12(6), pages 1-14, March.
    4. Nogueira Vilanova, Mateus Ricardo & Perrella Balestieri, José Antônio, 2014. "Energy and hydraulic efficiency in conventional water supply systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 701-714.
    5. Madlool, N.A. & Saidur, R. & Rahim, N.A. & Kamalisarvestani, M., 2013. "An overview of energy savings measures for cement industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 18-29.
    6. Yilmaz, Murat, 2015. "Limitations/capabilities of electric machine technologies and modeling approaches for electric motor design and analysis in plug-in electric vehicle applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 80-99.
    7. Mekhilef, S. & Saidur, R. & Safari, A., 2011. "A review on solar energy use in industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1777-1790, May.
    8. Firth, Anton & Zhang, Bo & Yang, Aidong, 2019. "Quantification of global waste heat and its environmental effects," Applied Energy, Elsevier, vol. 235(C), pages 1314-1334.
    9. Thirugnanasambandam, M. & Hasanuzzaman, M. & Saidur, R. & Ali, M.B. & Rajakarunakaran, S. & Devaraj, D. & Rahim, N.A., 2011. "Analysis of electrical motors load factors and energy savings in an Indian cement industry," Energy, Elsevier, vol. 36(7), pages 4307-4314.
    10. Wang, Zanxin & Wei, Wei, 2017. "External cost of photovoltaic oriented silicon production: A case in China," Energy Policy, Elsevier, vol. 107(C), pages 437-447.
    11. Markel Fernandez & Andres Sierra-Gonzalez & Endika Robles & Iñigo Kortabarria & Edorta Ibarra & Jose Luis Martin, 2020. "New Modulation Technique to Mitigate Common Mode Voltage Effects in Star-Connected Five-Phase AC Drives," Energies, MDPI, vol. 13(3), pages 1-19, January.
    12. Saidur, R. & Hossain, M.S. & Islam, M.R. & Fayaz, H. & Mohammed, H.A., 2011. "A review on kiln system modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2487-2500, June.
    13. Popa, Cezar & Pentiuc, Radu, 2012. "Analysis of a new induction thermal converter for heating," Energy, Elsevier, vol. 42(1), pages 81-93.
    14. Gang Lei & Jianguo Zhu & Youguang Guo & Chengcheng Liu & Bo Ma, 2017. "A Review of Design Optimization Methods for Electrical Machines," Energies, MDPI, vol. 10(12), pages 1-31, November.
    15. Hosain, Md Lokman & Bel Fdhila, Rebei & Rönnberg, Kristian, 2017. "Taylor-Couette flow and transient heat transfer inside the annulus air-gap of rotating electrical machines," Applied Energy, Elsevier, vol. 207(C), pages 624-633.
    16. Garzozi, A. & Greenblatt, D., 2022. "Exploiting the Coandă effect for wind-driven reciprocating RO desalination," Energy, Elsevier, vol. 238(PC).
    17. Saidur, R. & Rezaei, M. & Muzammil, W.K. & Hassan, M.H. & Paria, S. & Hasanuzzaman, M., 2012. "Technologies to recover exhaust heat from internal combustion engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5649-5659.
    18. Cha, Kyoung-Soo & Kim, Dong-Min & Jung, Young-Hoon & Lim, Myung-Seop, 2020. "Wound field synchronous motor with hybrid circuit for neighborhood electric vehicle traction improving fuel economy," Applied Energy, Elsevier, vol. 263(C).
    19. Yujun Shi & Linni Jian, 2018. "A Novel Dual-Permanent-Magnet-Excited Machine with Flux Strengthening Effect for Low-Speed Large-Torque Applications," Energies, MDPI, vol. 11(1), pages 1-17, January.
    20. Wen, Jianping & Zhao, Dan & Zhang, Chuanwei, 2020. "An overview of electricity powered vehicles: Lithium-ion battery energy storage density and energy conversion efficiency," Renewable Energy, Elsevier, vol. 162(C), pages 1629-1648.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:168:y:2022:i:c:s1364032122006694. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.