IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i14p2671-d247695.html
   My bibliography  Save this article

Thermal Transmittance of Internal Partition and External Facade LSF Walls: A Parametric Study

Author

Listed:
  • Paulo Santos

    (ISISE, Department of Civil Engineering, University of Coimbra, Pólo II, Rua Luís Reis Santos, 3030-788 Coimbra, Portugal)

  • Gabriela Lemes

    (ISISE, Department of Civil Engineering, University of Coimbra, Pólo II, Rua Luís Reis Santos, 3030-788 Coimbra, Portugal)

  • Diogo Mateus

    (ISISE, Department of Civil Engineering, University of Coimbra, Pólo II, Rua Luís Reis Santos, 3030-788 Coimbra, Portugal)

Abstract

Light steel framed (LSF) construction is becoming widespread as a quick, clean and flexible construction system. However, these LSF elements need to be well designed and protected against undesired thermal bridges caused by the steel high thermal conductivity. To reduce energy consumption in buildings it is necessary to understand how heat transfer happens in all kinds of walls and their configurations, and to adequately reduce the heat loss through them by decreasing its thermal transmittance ( U -value). In this work, numerical simulations are performed to assess different setups for two kinds of LSF walls: an interior partition wall and an exterior facade wall. Several parameters were evaluated separately to measure their influence on the wall U -value, and the addition of other elements was tested (e.g., thermal break strips) with the aim of achieving better thermal performances. The simulation modeling of a LSF interior partition with thermal break strips indicated a 24% U -value reduction in comparison with the reference case of using the LSF alone ( U = 0.449 W/(m 2 .K)). However, when the clearance between the steel studs was simulated with only 300 mm there was a 29% increase, due to the increase of steel material within the wall structure. For exterior facade walls ( U = 0.276 W/(m 2 .K)), the model with 80 mm of expanded polystyrene (EPS) in the exterior thermal insulation composite system (ETICS) reduced the thermal transmittance by 19%. Moreover, when the EPS was removed the U -value increased by 79%.

Suggested Citation

  • Paulo Santos & Gabriela Lemes & Diogo Mateus, 2019. "Thermal Transmittance of Internal Partition and External Facade LSF Walls: A Parametric Study," Energies, MDPI, vol. 12(14), pages 1-20, July.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:14:p:2671-:d:247695
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/14/2671/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/14/2671/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Soares, N. & Santos, P. & Gervásio, H. & Costa, J.J. & Simões da Silva, L., 2017. "Energy efficiency and thermal performance of lightweight steel-framed (LSF) construction: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 194-209.
    2. Schiavoni, S. & D׳Alessandro, F. & Bianchi, F. & Asdrubali, F., 2016. "Insulation materials for the building sector: A review and comparative analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 988-1011.
    3. Xiaolong Xu & Guohui Feng & Dandan Chi & Ming Liu & Baoyue Dou, 2018. "Optimization of Performance Parameter Design and Energy Use Prediction for Nearly Zero Energy Buildings," Energies, MDPI, vol. 11(12), pages 1-23, November.
    4. Antonio Paone & Jean-Philippe Bacher, 2018. "The Impact of Building Occupant Behavior on Energy Efficiency and Methods to Influence It: A Review of the State of the Art," Energies, MDPI, vol. 11(4), pages 1-19, April.
    5. Ruparathna, Rajeev & Hewage, Kasun & Sadiq, Rehan, 2016. "Improving the energy efficiency of the existing building stock: A critical review of commercial and institutional buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1032-1045.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Victor Lohmann & Paulo Santos, 2020. "Trombe Wall Thermal Behavior and Energy Efficiency of a Light Steel Frame Compartment: Experimental and Numerical Assessments," Energies, MDPI, vol. 13(11), pages 1-25, May.
    2. Paulo Santos & Paulo Lopes & David Abrantes, 2022. "Thermal Performance of Load-Bearing, Lightweight, Steel-Framed Partition Walls Using Thermal Break Strips: A Parametric Study," Energies, MDPI, vol. 15(24), pages 1-16, December.
    3. Paulo Santos & Paulo Lopes & David Abrantes, 2023. "Thermal Performance of Lightweight Steel Framed Facade Walls Using Thermal Break Strips and ETICS: A Parametric Study," Energies, MDPI, vol. 16(4), pages 1-16, February.
    4. Paulo Santos & Telmo Ribeiro, 2021. "Thermal Performance Improvement of Double-Pane Lightweight Steel Framed Walls Using Thermal Break Strips and Reflective Foils," Energies, MDPI, vol. 14(21), pages 1-16, October.
    5. Paulo Santos & Gabriela Lemes & Diogo Mateus, 2020. "Analytical Methods to Estimate the Thermal Transmittance of LSF Walls: Calculation Procedures Review and Accuracy Comparison," Energies, MDPI, vol. 13(4), pages 1-27, February.
    6. Paulo Santos & Diogo Mateus & Daniel Ferrandez & Amparo Verdu, 2022. "Numerical Simulation and Experimental Validation of Thermal Break Strips’ Improvement in Facade LSF Walls," Energies, MDPI, vol. 15(21), pages 1-18, November.
    7. Paulo Santos & Keerthan Poologanathan, 2021. "The Importance of Stud Flanges Size and Shape on the Thermal Performance of Lightweight Steel Framed Walls," Sustainability, MDPI, vol. 13(7), pages 1-22, April.
    8. Domagoj Tkalčić & Bojan Milovanović & Mergim Gaši & Marija Jelčić Rukavina & Ivana Banjad Pečur, 2023. "Optimization of Thermal Bridges Effect of Composite Lightweight Panels with Integrated Steel Load-Bearing Structure," Energies, MDPI, vol. 16(18), pages 1-24, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benedetti Miriam & Herce Carlos & Sforzini Matteo & Susca Tiziana & Toro Claudia, 2024. "Defining a sustainable supply chain for buildings Off-Site envelope thermal insulation solutions: proposal of a methodology to investigate opportunities based on a context analysis," Logistics, Supply Chain, Sustainability and Global Challenges, Sciendo, vol. 15(s1), pages 38-57.
    2. Panagiotis Michailidis & Iakovos Michailidis & Dimitrios Vamvakas & Elias Kosmatopoulos, 2023. "Model-Free HVAC Control in Buildings: A Review," Energies, MDPI, vol. 16(20), pages 1-45, October.
    3. Khencha Khadidja & Biara Ratiba Wided & Belmili Hocine, 2020. "Techno-economic study of BIPV in typical Sahara region in Algeria," Journal of Economic Development, Environment and People, Alliance of Central-Eastern European Universities, vol. 9(1), pages 27-57, September.
    4. Juana Isabel Méndez & Adán Medina & Pedro Ponce & Therese Peffer & Alan Meier & Arturo Molina, 2022. "Evolving Gamified Smart Communities in Mexico to Save Energy in Communities through Intelligent Interfaces," Energies, MDPI, vol. 15(15), pages 1-29, July.
    5. Jiang, Wei & Jin, Yang & Liu, Gongliang & Li, Qing & Li, Dong, 2023. "Passive nearly zero energy retrofits of rammed earth rural residential buildings based on energy efficiency and cost-effectiveness analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    6. Jakob Carlander & Bahram Moshfegh & Jan Akander & Fredrik Karlsson, 2020. "Effects on Energy Demand in an Office Building Considering Location, Orientation, Façade Design and Internal Heat Gains—A Parametric Study," Energies, MDPI, vol. 13(23), pages 1-22, November.
    7. Anna Mutule & Marcos Domingues & Fernando Ulloa-Vásquez & Dante Carrizo & Luis García-Santander & Ana-Maria Dumitrescu & Diego Issicaba & Lucas Melo, 2021. "Implementing Smart City Technologies to Inspire Change in Consumer Energy Behaviour," Energies, MDPI, vol. 14(14), pages 1-15, July.
    8. Stefano Cascone & Gianpiero Evola & Antonio Gagliano & Gaetano Sciuto & Chiara Baroetto Parisi, 2019. "Laboratory and In-Situ Measurements for Thermal and Acoustic Performance of Straw Bales," Sustainability, MDPI, vol. 11(20), pages 1-19, October.
    9. Artur Koper & Karol Prałat & Justyna Ciemnicka & Katarzyna Buczkowska, 2020. "Influence of the Calcination Temperature of Synthetic Gypsum on the Particle Size Distribution and Setting Time of Modified Building Materials," Energies, MDPI, vol. 13(21), pages 1-23, November.
    10. Kiguchi, Y. & Weeks, M. & Arakawa, R., 2021. "Predicting winners and losers under time-of-use tariffs using smart meter data," Energy, Elsevier, vol. 236(C).
    11. Krzysztof Wąs & Jan Radoń & Agnieszka Sadłowska-Sałęga, 2020. "Maintenance of Passive House Standard in the Light of Long-Term Study on Energy Use in a Prefabricated Lightweight Passive House in Central Europe," Energies, MDPI, vol. 13(11), pages 1-22, June.
    12. Hawks, M.A. & Cho, S., 2024. "Review and analysis of current solutions and trends for zero energy building (ZEB) thermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    13. Przemysław Miąsik & Joanna Krasoń, 2021. "Thermal Efficiency of Trombe Wall in the South Facade of a Frame Building," Energies, MDPI, vol. 14(3), pages 1-23, January.
    14. Alejandro Padilla-Rivera & Ben Amor & Pierre Blanchet, 2018. "Evaluating the Link between Low Carbon Reductions Strategies and Its Performance in the Context of Climate Change: A Carbon Footprint of a Wood-Frame Residential Building in Quebec, Canada," Sustainability, MDPI, vol. 10(8), pages 1-20, August.
    15. Golpîra, Hêriş, 2020. "Smart Energy-Aware Manufacturing Plant Scheduling under Uncertainty: A Risk-Based Multi-Objective Robust Optimization Approach," Energy, Elsevier, vol. 209(C).
    16. Ye, Zhongnan & Cheng, Kuangly & Hsu, Shu-Chien & Wei, Hsi-Hsien & Cheung, Clara Man, 2021. "Identifying critical building-oriented features in city-block-level building energy consumption: A data-driven machine learning approach," Applied Energy, Elsevier, vol. 301(C).
    17. Meinrenken, Christoph J. & Mehmani, Ali, 2019. "Concurrent optimization of thermal and electric storage in commercial buildings to reduce operating cost and demand peaks under time-of-use tariffs," Applied Energy, Elsevier, vol. 254(C).
    18. Piccardo, C. & Dodoo, A. & Gustavsson, L. & Tettey, U.Y.A., 2020. "Retrofitting with different building materials: Life-cycle primary energy implications," Energy, Elsevier, vol. 192(C).
    19. Zhang, Xingxing & Lovati, Marco & Vigna, Ilaria & Widén, Joakim & Han, Mengjie & Gal, Csilla & Feng, Tao, 2018. "A review of urban energy systems at building cluster level incorporating renewable-energy-source (RES) envelope solutions," Applied Energy, Elsevier, vol. 230(C), pages 1034-1056.
    20. Golpîra, Hêriş & Khan, Syed Abdul Rehman, 2019. "A multi-objective risk-based robust optimization approach to energy management in smart residential buildings under combined demand and supply uncertainty," Energy, Elsevier, vol. 170(C), pages 1113-1129.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:14:p:2671-:d:247695. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.