IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i7p3970-d529350.html
   My bibliography  Save this article

The Importance of Stud Flanges Size and Shape on the Thermal Performance of Lightweight Steel Framed Walls

Author

Listed:
  • Paulo Santos

    (Department of Civil Engineering, University of Coimbra, ISISE, Pólo II, Rua Luís Reis Santos, 3030-788 Coimbra, Portugal)

  • Keerthan Poologanathan

    (Department of Mechanical and Construction Engineering, Northumbria University, Newcastle upon Tyne NE1 8ST, UK)

Abstract

Energy production still relies considerably on fossil fuels, and the building sector is a major player in the energy consumption market, mainly for space heating and cooling. Thermal bridges (TBs) in buildings are very relevant for the energy efficiency of buildings and may have an impact on heating energy needs of up to 30%. Given the high thermal conductivity of steel, the relevance of TBs in lightweight steel framed (LSF) components could be even greater. No research was found in the literature for evaluating how important the size and shape of steel studs are on the thermal performance of LSF building elements, which is the main objective of this work. This assessment is performed for the internal partitions and exterior façade of load-bearing LSF walls. The accuracy of the numerical model used in the simulations was verified and validated by comparison experimental measurements. Three reference steel studs were considered, six stud flange lengths and four steel thicknesses were evaluated, and five flange indentation sizes and four indent filling materials were assessed, corresponding to a total of 246 modelled LSF walls. It was concluded that the R -value decreases when the flange length and the steel studs’ thickness increases, being that these variations are more significant for bigger flange sizes and for thicker steel studs. Additionally, it was found that a small indentation size (2.5 or 5 mm) is enough to provide a significant R -value increase and that it is preferable not to use any flange indentation filling material rather than using a poor performance one (recycled rubber).

Suggested Citation

  • Paulo Santos & Keerthan Poologanathan, 2021. "The Importance of Stud Flanges Size and Shape on the Thermal Performance of Lightweight Steel Framed Walls," Sustainability, MDPI, vol. 13(7), pages 1-22, April.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:7:p:3970-:d:529350
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/7/3970/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/7/3970/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Victor Lohmann & Paulo Santos, 2020. "Trombe Wall Thermal Behavior and Energy Efficiency of a Light Steel Frame Compartment: Experimental and Numerical Assessments," Energies, MDPI, vol. 13(11), pages 1-25, May.
    2. Soares, N. & Santos, P. & Gervásio, H. & Costa, J.J. & Simões da Silva, L., 2017. "Energy efficiency and thermal performance of lightweight steel-framed (LSF) construction: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 194-209.
    3. Paulo Santos & Gabriela Lemes & Diogo Mateus, 2020. "Analytical Methods to Estimate the Thermal Transmittance of LSF Walls: Calculation Procedures Review and Accuracy Comparison," Energies, MDPI, vol. 13(4), pages 1-27, February.
    4. Paulo Santos & Gabriela Lemes & Diogo Mateus, 2019. "Thermal Transmittance of Internal Partition and External Facade LSF Walls: A Parametric Study," Energies, MDPI, vol. 12(14), pages 1-20, July.
    5. Al-Sanea, Sami A. & Zedan, M.F., 2012. "Effect of thermal bridges on transmission loads and thermal resistance of building walls under dynamic conditions," Applied Energy, Elsevier, vol. 98(C), pages 584-593.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paulo Santos & Paulo Lopes & David Abrantes, 2022. "Thermal Performance of Load-Bearing, Lightweight, Steel-Framed Partition Walls Using Thermal Break Strips: A Parametric Study," Energies, MDPI, vol. 15(24), pages 1-16, December.
    2. Paulo Santos & Paulo Lopes & David Abrantes, 2023. "Thermal Performance of Lightweight Steel Framed Facade Walls Using Thermal Break Strips and ETICS: A Parametric Study," Energies, MDPI, vol. 16(4), pages 1-16, February.
    3. Paulo Santos & Telmo Ribeiro, 2021. "Thermal Performance Improvement of Double-Pane Lightweight Steel Framed Walls Using Thermal Break Strips and Reflective Foils," Energies, MDPI, vol. 14(21), pages 1-16, October.
    4. Paulo Santos & Diogo Mateus & Daniel Ferrandez & Amparo Verdu, 2022. "Numerical Simulation and Experimental Validation of Thermal Break Strips’ Improvement in Facade LSF Walls," Energies, MDPI, vol. 15(21), pages 1-18, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paulo Santos & Paulo Lopes & David Abrantes, 2022. "Thermal Performance of Load-Bearing, Lightweight, Steel-Framed Partition Walls Using Thermal Break Strips: A Parametric Study," Energies, MDPI, vol. 15(24), pages 1-16, December.
    2. Victor Lohmann & Paulo Santos, 2020. "Trombe Wall Thermal Behavior and Energy Efficiency of a Light Steel Frame Compartment: Experimental and Numerical Assessments," Energies, MDPI, vol. 13(11), pages 1-25, May.
    3. Przemysław Miąsik & Joanna Krasoń, 2021. "Thermal Efficiency of Trombe Wall in the South Facade of a Frame Building," Energies, MDPI, vol. 14(3), pages 1-23, January.
    4. Domagoj Tkalčić & Bojan Milovanović & Mergim Gaši & Marija Jelčić Rukavina & Ivana Banjad Pečur, 2023. "Optimization of Thermal Bridges Effect of Composite Lightweight Panels with Integrated Steel Load-Bearing Structure," Energies, MDPI, vol. 16(18), pages 1-24, September.
    5. Paulo Santos & Telmo Ribeiro, 2021. "Thermal Performance Improvement of Double-Pane Lightweight Steel Framed Walls Using Thermal Break Strips and Reflective Foils," Energies, MDPI, vol. 14(21), pages 1-16, October.
    6. Paulo Santos & Diogo Mateus & Daniel Ferrandez & Amparo Verdu, 2022. "Numerical Simulation and Experimental Validation of Thermal Break Strips’ Improvement in Facade LSF Walls," Energies, MDPI, vol. 15(21), pages 1-18, November.
    7. Paulo Santos & Paulo Lopes & David Abrantes, 2023. "Thermal Performance of Lightweight Steel Framed Facade Walls Using Thermal Break Strips and ETICS: A Parametric Study," Energies, MDPI, vol. 16(4), pages 1-16, February.
    8. Paulo Santos & Gabriela Lemes & Diogo Mateus, 2020. "Analytical Methods to Estimate the Thermal Transmittance of LSF Walls: Calculation Procedures Review and Accuracy Comparison," Energies, MDPI, vol. 13(4), pages 1-27, February.
    9. Yu, Sisi & Liu, Yanfeng & Wang, Dengjia & Bahaj, AbuBakr S. & Wu, Yue & Liu, Jiaping, 2021. "Review of thermal and environmental performance of prefabricated buildings: Implications to emission reductions in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    10. Kheira Anissa Tabet Aoul & Rahma Hagi & Rahma Abdelghani & Monaya Syam & Boshra Akhozheya, 2021. "Building Envelope Thermal Defects in Existing and Under-Construction Housing in the UAE; Infrared Thermography Diagnosis and Qualitative Impacts Analysis," Sustainability, MDPI, vol. 13(4), pages 1-23, February.
    11. Berger, Julien & Mendes, Nathan, 2017. "An innovative method for the design of high energy performance building envelopes," Applied Energy, Elsevier, vol. 190(C), pages 266-277.
    12. Mohamed F. Zedan & Sami Al-Sanea & Abdulaziz Al-Mujahid & Zeyad Al-Suhaibani, 2016. "Effect of Thermal Bridges in Insulated Walls on Air-Conditioning Loads Using Whole Building Energy Analysis," Sustainability, MDPI, vol. 8(6), pages 1-20, June.
    13. Przemysław Brzyski & Magdalena Grudzińska & Martin Böhm & Grzegorz Łagód, 2022. "Energy Simulations of a Building Insulated with a Hemp-Lime Composite with Different Wall and Node Variants," Energies, MDPI, vol. 15(20), pages 1-16, October.
    14. Aleksejs Prozuments & Anatolijs Borodinecs & Guna Bebre & Diana Bajare, 2023. "A Review on Trombe Wall Technology Feasibility and Applications," Sustainability, MDPI, vol. 15(5), pages 1-15, February.
    15. Baldinelli, G. & Bianchi, F., 2014. "Windows thermal resistance: Infrared thermography aided comparative analysis among finite volumes simulations and experimental methods," Applied Energy, Elsevier, vol. 136(C), pages 250-258.
    16. Aleksejs Prozuments & Anatolijs Borodinecs & Diana Bajare, 2023. "Trombe Wall System’s Thermal Energy Output Analysis at a Factory Building," Energies, MDPI, vol. 16(4), pages 1-13, February.
    17. Natalia Cid & Ana Ogando & M. A. Gómez, 2017. "Acquisition System Verification for Energy Efficiency Analysis of Building Materials," Energies, MDPI, vol. 10(9), pages 1-12, August.
    18. Rafael Suárez & Rocío Escandón & Ramón López-Pérez & Ángel Luis León-Rodríguez & Tillmann Klein & Sacha Silvester, 2018. "Impact of Climate Change: Environmental Assessment of Passive Solutions in a Single-Family Home in Southern Spain," Sustainability, MDPI, vol. 10(8), pages 1-17, August.
    19. Paulo Santos & Gabriela Lemes & Diogo Mateus, 2019. "Thermal Transmittance of Internal Partition and External Facade LSF Walls: A Parametric Study," Energies, MDPI, vol. 12(14), pages 1-20, July.
    20. Kyriakidis, Andreas & Michael, Aimilios & Illampas, Rogiros & Charmpis, Dimos C. & Ioannou, Ioannis, 2018. "Thermal performance and embodied energy of standard and retrofitted wall systems encountered in Southern Europe," Energy, Elsevier, vol. 161(C), pages 1016-1027.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:7:p:3970-:d:529350. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.