IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i12p3252-d184771.html
   My bibliography  Save this article

Optimization of Performance Parameter Design and Energy Use Prediction for Nearly Zero Energy Buildings

Author

Listed:
  • Xiaolong Xu

    (Shenyang Jianzhu University, Shenyang 110168, China)

  • Guohui Feng

    (Shenyang Jianzhu University, Shenyang 110168, China)

  • Dandan Chi

    (Shenyang Jianzhu University, Shenyang 110168, China)

  • Ming Liu

    (Shenyang Jianzhu University, Shenyang 110168, China)

  • Baoyue Dou

    (Shenyang Jianzhu University, Shenyang 110168, China)

Abstract

Optimizing key parameters with energy consumption as the control target can minimize the heating and cooling needs of buildings. In this paper we focus on the optimization of performance parameters design and the prediction of energy consumption for nearly Zero Energy Buildings (nZEB). The optimal combination of various performance parameters and the Energy Saving Ratio (ESR)are studied by using a large volume of simulation data. Artificial neural networks (ANNs) are applied for the prediction of annual electrical energy consumption in a nearly Zero Energy Building designs located in Shenyang (China). The data of the energy demand for our test is obtained by using building simulation techniques. The results demonstrate that the heating energy demand for our test nearly Zero Energy Building is 17.42 KW·h/(m 2 ·a). The Energy Saving Ratio of window-to-wall ratios optimization is the most obvious, followed by thermal performance parameters of the window, and finally the insulation thickness. The maximum relative error of building energy consumption prediction is 6.46% when using the artificial neural network model to predict energy consumption. The establishment of this prediction method enables architects to easily and accurately obtain the energy consumption of buildings during the design phase.

Suggested Citation

  • Xiaolong Xu & Guohui Feng & Dandan Chi & Ming Liu & Baoyue Dou, 2018. "Optimization of Performance Parameter Design and Energy Use Prediction for Nearly Zero Energy Buildings," Energies, MDPI, vol. 11(12), pages 1-23, November.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3252-:d:184771
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/12/3252/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/12/3252/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Garud, Raghu & Karnoe, Peter, 2003. "Bricolage versus breakthrough: distributed and embedded agency in technology entrepreneurship," Research Policy, Elsevier, vol. 32(2), pages 277-300, February.
    2. Daouas, Naouel, 2011. "A study on optimum insulation thickness in walls and energy savings in Tunisian buildings based on analytical calculation of cooling and heating transmission loads," Applied Energy, Elsevier, vol. 88(1), pages 156-164, January.
    3. Kwon Sook Park & Mi Jeong Kim, 2017. "Energy Demand Reduction in the Residential Building Sector: A Case Study of Korea," Energies, MDPI, vol. 10(10), pages 1-11, September.
    4. Hae Jin Kang, 2017. "Development of an Nearly Zero Emission Building (nZEB) Life Cycle Cost Assessment Tool for Fast Decision Making in the Early Design Phase," Energies, MDPI, vol. 10(1), pages 1-21, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhiqiang Wang & Qi Tian & Jie Jia, 2021. "Numerical Study on Performance Optimization of an Energy-Saving Insulated Window," Sustainability, MDPI, vol. 13(2), pages 1-25, January.
    2. Paulo Santos & Gabriela Lemes & Diogo Mateus, 2019. "Thermal Transmittance of Internal Partition and External Facade LSF Walls: A Parametric Study," Energies, MDPI, vol. 12(14), pages 1-20, July.
    3. Simon Ravyts & Mauricio Dalla Vecchia & Giel Van den Broeck & Johan Driesen, 2019. "Review on Building-Integrated Photovoltaics Electrical System Requirements and Module-Integrated Converter Recommendations," Energies, MDPI, vol. 12(8), pages 1-21, April.
    4. Khencha Khadidja & Biara Ratiba Wided & Belmili Hocine, 2020. "Techno-economic study of BIPV in typical Sahara region in Algeria," Journal of Economic Development, Environment and People, Alliance of Central-Eastern European Universities, vol. 9(1), pages 27-57, September.
    5. Seung Hyo Baek & Byung Hee Lee, 2019. "Optimal Decision-Making of Renewable Energy Systems in Buildings in the Early Design Stage," Sustainability, MDPI, vol. 11(5), pages 1-19, March.
    6. Haijiang Zou & Siyu Guo & Ruifeng Wang & Fenghao Wang & Zhenxing Shen & Wanlong Cai, 2023. "Numerical Investigation of the Long-Term Load Shifting Behaviors within the Borehole Heat Exchanger Array System," Energies, MDPI, vol. 16(5), pages 1-19, March.
    7. Krzysztof Wąs & Jan Radoń & Agnieszka Sadłowska-Sałęga, 2020. "Maintenance of Passive House Standard in the Light of Long-Term Study on Energy Use in a Prefabricated Lightweight Passive House in Central Europe," Energies, MDPI, vol. 13(11), pages 1-22, June.
    8. Xiaojing Meng & Beibei Wei & Yingni Zhai, 2020. "Sensitivity Analysis of Envelope Design Parameters of Industrial Buildings with Natural Ventilation," Sustainability, MDPI, vol. 12(24), pages 1-12, December.
    9. Gleydson de Oliveira Cavalcanti & Handson Claudio Dias Pimenta, 2023. "Electric Energy Management in Buildings Based on the Internet of Things: A Systematic Review," Energies, MDPI, vol. 16(15), pages 1-29, August.
    10. Krzysztof Wąs & Jan Radoń & Agnieszka Sadłowska-Sałęga, 2022. "Thermal Comfort—Case Study in a Lightweight Passive House," Energies, MDPI, vol. 15(13), pages 1-21, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lai, Kuei-Kuei & Chen, Yu-Long & Kumar, Vimal & Daim, Tugrul & Verma, Pratima & Kao, Fang-Chen & Liu, Ruirong, 2023. "Mapping technological trajectories and exploring knowledge sources: A case study of E-payment technologies," Technological Forecasting and Social Change, Elsevier, vol. 186(PB).
    2. Pandza, Krsto & Ellwood, Paul, 2013. "Strategic and ethical foundations for responsible innovation," Research Policy, Elsevier, vol. 42(5), pages 1112-1125.
    3. Mario Pansera & Fabien Martinez, 2017. "Innovation for development and poverty reduction: an integrative literature review," Post-Print hal-02887777, HAL.
    4. Andrews, Matt & Pritchett, Lant & Woolcock, Michael, 2013. "Escaping Capability Traps Through Problem Driven Iterative Adaptation (PDIA)," World Development, Elsevier, vol. 51(C), pages 234-244.
    5. Harborne, Paul & Hendry, Chris, 2009. "Pathways to commercial wind power in the US, Europe and Japan: The role of demonstration projects and field trials in the innovation process," Energy Policy, Elsevier, vol. 37(9), pages 3580-3595, September.
    6. Pavlos Kilintzis & Giorgos Avlogiaris & Elpida Samara & Yiannis Bakouros, 2023. "Technology Entrepreneurship: a Model for the European Case," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 14(2), pages 879-904, June.
    7. Witell, Lars & Gebauer, Heiko & Jaakkola, Elina & Hammedi, Wafa & Patricio, Lia & Perks, Helen, 2017. "A bricolage perspective on service innovation," Journal of Business Research, Elsevier, vol. 79(C), pages 290-298.
    8. repec:unu:wpaper:wp2012-64 is not listed on IDEAS
    9. Spencer H. Harrison & Kevin G. Corley, 2011. "Clean Climbing, Carabiners, and Cultural Cultivation: Developing an Open-Systems Perspective of Culture," Organization Science, INFORMS, vol. 22(2), pages 391-412, April.
    10. Saafi, Khawla & Daouas, Naouel, 2019. "Energy and cost efficiency of phase change materials integrated in building envelopes under Tunisia Mediterranean climate," Energy, Elsevier, vol. 187(C).
    11. Hoppmann, Joern, 2021. "Hand in hand to Nowhereland? How the resource dependence of research institutes influences their co-evolution with industry," Research Policy, Elsevier, vol. 50(2).
    12. Bryan T. Stinchfield & Reed E. Nelson & Matthew S. Wood, 2013. "Learning from Levi–Strauss’ Legacy: Art, Craft, Engineering, Bricolage, and Brokerage in Entrepreneurship," Entrepreneurship Theory and Practice, , vol. 37(4), pages 889-921, July.
    13. Lichtenstein Benyamin, 2016. "Emergence and Emergents in Entrepreneurship: Complexity Science Insights into New Venture Creation," Entrepreneurship Research Journal, De Gruyter, vol. 6(1), pages 43-52, January.
    14. Al-Sanea, Sami A. & Zedan, M.F., 2011. "Improving thermal performance of building walls by optimizing insulation layer distribution and thickness for same thermal mass," Applied Energy, Elsevier, vol. 88(9), pages 3113-3124.
    15. Raghu Garud & Arun Kumaraswamy & Peter Karnøe, 2010. "Path Dependence or Path Creation?," Journal of Management Studies, Wiley Blackwell, vol. 47(4), pages 760-774, June.
    16. Bradley, Steven W. & Wiklund, Johan & Shepherd, Dean A., 2011. "Swinging a double-edged sword: The effect of slack on entrepreneurial management and growth," Journal of Business Venturing, Elsevier, vol. 26(5), pages 537-554, September.
    17. Matt Andrews, 2014. "Can One Retell a Mozambican Reform Story Through Problem-Driven Iterative Adaptation?," WIDER Working Paper Series wp-2014-094, World Institute for Development Economic Research (UNU-WIDER).
    18. Shafieian, Abdellah & Khiadani, Mehdi & Nosrati, Ataollah, 2018. "A review of latest developments, progress, and applications of heat pipe solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 273-304.
    19. Magnus Henrekson & Christian Sandström & Mikael Stenkula, 2024. "Seven reasons why mission‐oriented innovation policies seldom work in practice," Economic Affairs, Wiley Blackwell, vol. 44(2), pages 354-362, June.
    20. Jonas Heiberg & Christian Binz & Bernhard Truffer, 2020. "The Geography of Technology Legitimation. How multi-scalar legitimation processes matter for path creation in emerging industries," Papers in Evolutionary Economic Geography (PEEG) 2034, Utrecht University, Department of Human Geography and Spatial Planning, Group Economic Geography, revised Aug 2020.
    21. Cosh, A. & Zhang, J., 2012. "Variety of Search and Innovation: A Comparative Study of US Manufacturing and Knowledge Intensive Business Services Sectors," Working Papers wp431, Centre for Business Research, University of Cambridge.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3252-:d:184771. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.