IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v340y2023ics0306261923004312.html
   My bibliography  Save this article

Development of nanomodified-cementitious composite using phase change material for energy saving applications

Author

Listed:
  • Haider, Muhammad Zeeshan
  • Jin, Xinghan
  • Hu, Jong Wan

Abstract

In this study, a nanoengineered thermal-energy storing cementitious composite incorporated with a microencapsulated phase change material (m-PCM) and the combination of multi-walled carbon nanotubes (MWCNTs) and silica fume (SF), were developed for energy-saving purposes. m-PCM with a phase-change temperature of 5.5 °C and an enthalpy of 84 J/g was added to create latent heat storage in cement mortar. MWCNTs were added to improve the mechanical and thermal performance of the cementitious composite. m-PCM was incorporated in the cement mortar in proportions of 5%, 10%, and 15% by binder weight. However, the dosage of MWCNTs and SF kept constant at 0.05% and 10% by binder weight, respectively. A uniaxial compression test was performed to analyze the effect of m-PCM on the mechanical properties of the mortar. The compression test results showed a significant decrease in mechanical strength owing to the addition of m-PCMs. However, the addition of SF/MWCNTs significantly enhanced the compressive strength of m-PCM mortars. A thermal-cycling test, assisted by an electrically-controlled–heated wire system, was performed to study the thermal response of nanoengineered m-PCM mortars with respect to varying ambient temperatures. The results revealed that the energy requirement for thermal regulation in m-PCM mortars with MWCNTs was reduced by approximately 60% as compared to the control specimen.

Suggested Citation

  • Haider, Muhammad Zeeshan & Jin, Xinghan & Hu, Jong Wan, 2023. "Development of nanomodified-cementitious composite using phase change material for energy saving applications," Applied Energy, Elsevier, vol. 340(C).
  • Handle: RePEc:eee:appene:v:340:y:2023:i:c:s0306261923004312
    DOI: 10.1016/j.apenergy.2023.121067
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923004312
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121067?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pan, Pan & Wu, Shaopeng & Xiao, Yue & Liu, Gang, 2015. "A review on hydronic asphalt pavement for energy harvesting and snow melting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 624-634.
    2. Drissi, Sarra & Ling, Tung-Chai & Mo, Kim Hung & Eddhahak, Anissa, 2019. "A review of microencapsulated and composite phase change materials: Alteration of strength and thermal properties of cement-based materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 467-484.
    3. Cui, Hongzhi & Tang, Waiching & Qin, Qinghua & Xing, Feng & Liao, Wenyu & Wen, Haibo, 2017. "Development of structural-functional integrated energy storage concrete with innovative macro-encapsulated PCM by hollow steel ball," Applied Energy, Elsevier, vol. 185(P1), pages 107-118.
    4. Salunkhe, Pramod B. & Shembekar, Prashant S., 2012. "A review on effect of phase change material encapsulation on the thermal performance of a system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5603-5616.
    5. Memon, Shazim Ali & Cui, Hongzhi & Lo, Tommy Y. & Li, Qiusheng, 2015. "Development of structural–functional integrated concrete with macro-encapsulated PCM for thermal energy storage," Applied Energy, Elsevier, vol. 150(C), pages 245-257.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rathore, Pushpendra Kumar Singh & Shukla, Shailendra Kumar, 2020. "An experimental evaluation of thermal behavior of the building envelope using macroencapsulated PCM for energy savings," Renewable Energy, Elsevier, vol. 149(C), pages 1300-1313.
    2. Yu, De-Hai & He, Zhi-Zhu, 2019. "Shape-remodeled macrocapsule of phase change materials for thermal energy storage and thermal management," Applied Energy, Elsevier, vol. 247(C), pages 503-516.
    3. Sih Ying Kong & Xu Yang & Suvash Chandra Paul & Leong Sing Wong & Branko Šavija, 2019. "Thermal Response of Mortar Panels with Different Forms of Macro-Encapsulated Phase Change Materials: A Finite Element Study," Energies, MDPI, vol. 12(13), pages 1-15, July.
    4. Dai, Jiasheng & Ma, Feng & Fu, Zhen & Li, Chen & Jia, Meng & Shi, Ke & Wen, Yalu & Wang, Wentong, 2021. "Applicability assessment of stearic acid/palmitic acid binary eutectic phase change material in cooling pavement," Renewable Energy, Elsevier, vol. 175(C), pages 748-759.
    5. Xiaoling Cui & Xiaoyun Du & Yanzhou Cao & Guochen Sang & Yangkai Zhang & Lei Zhang & Yiyun Zhu, 2020. "Thermophysical Properties Characterization of Sulphoaluminate Cement Mortars Incorporating Phase Change Material for Thermal Energy Storage," Energies, MDPI, vol. 13(19), pages 1-17, September.
    6. Qin, Yinghong, 2015. "A review on the development of cool pavements to mitigate urban heat island effect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 445-459.
    7. Jiang, Fuyun & Wang, Xiaodong & Wu, Dezhen, 2016. "Magnetic microencapsulated phase change materials with an organo-silica shell: Design, synthesis and application for electromagnetic shielding and thermal regulating polyimide films," Energy, Elsevier, vol. 98(C), pages 225-239.
    8. Yu, Qinghua & Chen, Xi & Yang, Hongxing, 2021. "Research progress on utilization of phase change materials in photovoltaic/thermal systems: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    9. Li, Min & Zhou, Dongyi & Jiang, Yaqing, 2021. "Preparation and thermal storage performance of phase change ceramsite sand and thermal storage light-weight concrete," Renewable Energy, Elsevier, vol. 175(C), pages 143-152.
    10. Ikutegbe, Charles A. & Farid, Mohammed M., 2020. "Application of phase change material foam composites in the built environment: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    11. Facundo Bre & Antonio Caggiano & Eduardus A. B. Koenders, 2022. "Multiobjective Optimization of Cement-Based Panels Enhanced with Microencapsulated Phase Change Materials for Building Energy Applications," Energies, MDPI, vol. 15(14), pages 1-17, July.
    12. Farzan, Hadi & Zaim, Ehsan Hasan & Ameri, Mehran & Amiri, Tayebeh, 2021. "Study on effects of wind velocity on thermal efficiency and heat dynamics of pavement solar collectors: An experimental and numerical study," Renewable Energy, Elsevier, vol. 163(C), pages 1718-1728.
    13. Evdoxia Paroutoglou & Peter Fojan & Leonid Gurevich & Göran Hultmark & Alireza Afshari, 2021. "Thermal Analysis of Organic and Nanoencapsulated Electrospun Phase Change Materials," Energies, MDPI, vol. 14(4), pages 1-15, February.
    14. Bao, Xiaohua & Qi, Xuedong & Cui, Hongzhi & Tang, Waiching & Chen, Xiangsheng, 2022. "Experimental study on thermal response of a PCM energy pile in unsaturated clay," Renewable Energy, Elsevier, vol. 185(C), pages 790-803.
    15. Singh, Aditya Kumar & Rathore, Pushpendra Kumar Singh & Sharma, R.K. & Gupta, Naveen Kumar & Kumar, Rajan, 2023. "Experimental evaluation of composite concrete incorporated with thermal energy storage material for improved thermal behavior of buildings," Energy, Elsevier, vol. 263(PA).
    16. Xu, Tianhao & Humire, Emma Nyholm & Trevisan, Silvia & Ignatowicz, Monika & Sawalha, Samer & Chiu, Justin NW., 2022. "Experimental and numerical investigation of a latent heat thermal energy storage unit with ellipsoidal macro-encapsulation," Energy, Elsevier, vol. 238(PB).
    17. Koide, Hiroaki & Kurniawan, Ade & Takahashi, Tatsuya & Kawaguchi, Takahiro & Sakai, Hiroki & Sato, Yusuke & Chiu, Justin NW. & Nomura, Takahiro, 2022. "Performance analysis of packed bed latent heat storage system for high-temperature thermal energy storage using pellets composed of micro-encapsulated phase change material," Energy, Elsevier, vol. 238(PC).
    18. Drissi, Sarra & Ling, Tung-Chai & Mo, Kim Hung, 2020. "Thermal performance of a solar energy storage concrete panel incorporating phase change material aggregates developed for thermal regulation in buildings," Renewable Energy, Elsevier, vol. 160(C), pages 817-829.
    19. Wang, Chenghao & Wang, Zhi-Hua & Kaloush, Kamil E. & Shacat, Joseph, 2021. "Cool pavements for urban heat island mitigation: A synthetic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    20. Qiu, Zhongzhu & Ma, Xiaoli & Li, Peng & Zhao, Xudong & Wright, Andrew, 2017. "Micro-encapsulated phase change material (MPCM) slurries: Characterization and building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 246-262.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:340:y:2023:i:c:s0306261923004312. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.