Applications of the infrared thermography in the energy audit of buildings: A review
Author
Abstract
Suggested Citation
DOI: 10.1016/j.rser.2017.10.031
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Fokaides, Paris A. & Kalogirou, Soteris A., 2011. "Application of infrared thermography for the determination of the overall heat transfer coefficient (U-Value) in building envelopes," Applied Energy, Elsevier, vol. 88(12), pages 4358-4365.
- Fokaides, Paris A. & Jurelionis, Andrius & Gagyte, Laura & Kalogirou, Soteris A., 2016. "Mock target IR thermography for indoor air temperature measurement," Applied Energy, Elsevier, vol. 164(C), pages 676-685.
- Kylili, Angeliki & Fokaides, Paris A. & Christou, Petros & Kalogirou, Soteris A., 2014. "Infrared thermography (IRT) applications for building diagnostics: A review," Applied Energy, Elsevier, vol. 134(C), pages 531-549.
- Lehmann, B. & Ghazi Wakili, K. & Frank, Th. & Vera Collado, B. & Tanner, Ch., 2013. "Effects of individual climatic parameters on the infrared thermography of buildings," Applied Energy, Elsevier, vol. 110(C), pages 29-43.
- Ohlsson, K.E.A. & Olofsson, T., 2014. "Quantitative infrared thermography imaging of the density of heat flow rate through a building element surface," Applied Energy, Elsevier, vol. 134(C), pages 499-505.
- Giuliano Dall'O' & Luca Sarto & Angela Panza, 2013. "Infrared Screening of Residential Buildings for Energy Audit Purposes: Results of a Field Test," Energies, MDPI, vol. 6(8), pages 1-20, July.
- Fox, Matthew & Coley, David & Goodhew, Steve & de Wilde, Pieter, 2014. "Thermography methodologies for detecting energy related building defects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 296-310.
- Francesco Bianchi & Anna Laura Pisello & Giorgio Baldinelli & Francesco Asdrubali, 2014. "Infrared Thermography Assessment of Thermal Bridges in Building Envelope: Experimental Validation in a Test Room Setup," Sustainability, MDPI, vol. 6(10), pages 1-14, October.
- Asdrubali, Francesco & Baldinelli, Giorgio & Bianchi, Francesco, 2012. "A quantitative methodology to evaluate thermal bridges in buildings," Applied Energy, Elsevier, vol. 97(C), pages 365-373.
- Albatici, Rossano & Tonelli, Arnaldo M. & Chiogna, Michela, 2015. "A comprehensive experimental approach for the validation of quantitative infrared thermography in the evaluation of building thermal transmittance," Applied Energy, Elsevier, vol. 141(C), pages 218-228.
- Flores Larsen, Silvana & Hongn, Marcos, 2014. "Determining the infrared reflectance of specular surfaces by using thermographic analysis," Renewable Energy, Elsevier, vol. 64(C), pages 306-313.
- Baldinelli, G. & Bianchi, F., 2014. "Windows thermal resistance: Infrared thermography aided comparative analysis among finite volumes simulations and experimental methods," Applied Energy, Elsevier, vol. 136(C), pages 250-258.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Mirco Andreotti & Marta Calzolari & Pietromaria Davoli & Luisa Dias Pereira & Elena Lucchi & Roberto Malaguti, 2020. "Design and Construction of a New Metering Hot Box for the In Situ Hygrothermal Measurement in Dynamic Conditions of Historic Masonries," Energies, MDPI, vol. 13(11), pages 1-21, June.
- Manuel J. Carretero-Ayuso & Carlos E. Rodríguez-Jiménez & David Bienvenido-Huertas & Juan Moyano, 2020. "Cataloguing of the Defects Existing in Aluminium Window Frames and Their Recurrence According to Pluvio-Climatic Zones," Sustainability, MDPI, vol. 12(18), pages 1-15, September.
- Blanca Tejedor & Eva Barreira & Vasco Peixoto de Freitas & Tomasz Kisilewicz & Katarzyna Nowak-Dzieszko & Umberto Berardi, 2020. "Impact of Stationary and Dynamic Conditions on the U-Value Measurements of Heavy-Multi Leaf Walls by Quantitative IRT," Energies, MDPI, vol. 13(24), pages 1-19, December.
- Zoe Mayer & Julia Heuer & Rebekka Volk & Frank Schultmann, 2021. "Aerial Thermographic Image-Based Assessment of Thermal Bridges Using Representative Classifications and Calculations," Energies, MDPI, vol. 14(21), pages 1-43, November.
- Rasooli, Arash & Itard, Laure, 2019. "In-situ rapid determination of walls’ thermal conductivity, volumetric heat capacity, and thermal resistance, using response factors," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
- Takahiro Kimura & Tao Zhang & Hiroatsu Fukuda, 2019. "A Proposal for the Development of a Building Management System for Extending the Lifespan of Housing Complexes in Japan," Sustainability, MDPI, vol. 11(20), pages 1-18, October.
- Akkurt, G.G. & Aste, N. & Borderon, J. & Buda, A. & Calzolari, M. & Chung, D. & Costanzo, V. & Del Pero, C. & Evola, G. & Huerto-Cardenas, H.E. & Leonforte, F. & Lo Faro, A. & Lucchi, E. & Marletta, L, 2020. "Dynamic thermal and hygrometric simulation of historical buildings: Critical factors and possible solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
- Shabunko, Veronika & Badrinarayanan, Samyuktha & Pillai, Dhanup S., 2021. "Evaluation of in-situ thermal transmittance of innovative building integrated photovoltaic modules: Application to thermal performance assessment for green mark certification in the tropics," Energy, Elsevier, vol. 235(C).
- Sukjoon Oh & Suyeon Ham & Seongjin Lee, 2021. "Drone-Assisted Image Processing Scheme using Frame-Based Location Identification for Crack and Energy Loss Detection in Building Envelopes," Energies, MDPI, vol. 14(19), pages 1-19, October.
- Gertsvolf, David & Horvat, Miljana & Aslam, Danesh & Khademi, April & Berardi, Umberto, 2024. "A U-net convolutional neural network deep learning model application for identification of energy loss in infrared thermographic images," Applied Energy, Elsevier, vol. 360(C).
- Dawid Szurgacz & Sergey Zhironkin & Stefan Vöth & Jiří Pokorný & A.J.S. (Sam) Spearing & Michal Cehlár & Marta Stempniak & Leszek Sobik, 2021. "Thermal Imaging Study to Determine the Operational Condition of a Conveyor Belt Drive System Structure," Energies, MDPI, vol. 14(11), pages 1-18, June.
- Paulo Santos & Gabriela Lemes & Diogo Mateus, 2020. "Analytical Methods to Estimate the Thermal Transmittance of LSF Walls: Calculation Procedures Review and Accuracy Comparison," Energies, MDPI, vol. 13(4), pages 1-27, February.
- Martin, Miguel & Chong, Adrian & Biljecki, Filip & Miller, Clayton, 2022. "Infrared thermography in the built environment: A multi-scale review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
- Kheira Anissa Tabet Aoul & Rahma Hagi & Rahma Abdelghani & Monaya Syam & Boshra Akhozheya, 2021. "Building Envelope Thermal Defects in Existing and Under-Construction Housing in the UAE; Infrared Thermography Diagnosis and Qualitative Impacts Analysis," Sustainability, MDPI, vol. 13(4), pages 1-23, February.
- Garrido, I. & Lagüela, S. & Otero, R. & Arias, P., 2020. "Thermographic methodologies used in infrastructure inspection: A review—Post-processing procedures," Applied Energy, Elsevier, vol. 266(C).
- Shariq, M. Hasan & Hughes, Ben Richard, 2020. "Revolutionising building inspection techniques to meet large-scale energy demands: A review of the state-of-the-art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
- Javad Zare Derakhshan & Saeed Firouzi & Armaghan Kosari-Moghaddam, 2022. "Energy audit of tobacco production agro-system based on different farm size levels in northern Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 2715-2735, February.
- Bienvenido-Huertas, David & Moyano, Juan & Marín, David & Fresco-Contreras, Rafael, 2019. "Review of in situ methods for assessing the thermal transmittance of walls," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 356-371.
- Younness EL Fouih & Amine Allouhi & Jamil Abdelmajid & Tarik Kousksou & Youssef Mourad, 2020. "Post Energy Audit of Two Mosques as a Case Study of Intermittent Occupancy Buildings: Toward more Sustainable Mosques," Sustainability, MDPI, vol. 12(23), pages 1-22, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Baldinelli, Giorgio & Bianchi, Francesco & Rotili, Antonella & Costarelli, Danilo & Seracini, Marco & Vinti, Gianluca & Asdrubali, Francesco & Evangelisti, Luca, 2018. "A model for the improvement of thermal bridges quantitative assessment by infrared thermography," Applied Energy, Elsevier, vol. 211(C), pages 854-864.
- Martin, Miguel & Chong, Adrian & Biljecki, Filip & Miller, Clayton, 2022. "Infrared thermography in the built environment: A multi-scale review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
- O'Grady, Małgorzata & Lechowska, Agnieszka A. & Harte, Annette M., 2017. "Quantification of heat losses through building envelope thermal bridges influenced by wind velocity using the outdoor infrared thermography technique," Applied Energy, Elsevier, vol. 208(C), pages 1038-1052.
- Bienvenido-Huertas, David & Moyano, Juan & Marín, David & Fresco-Contreras, Rafael, 2019. "Review of in situ methods for assessing the thermal transmittance of walls," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 356-371.
- Blanca Tejedor & Eva Barreira & Vasco Peixoto de Freitas & Tomasz Kisilewicz & Katarzyna Nowak-Dzieszko & Umberto Berardi, 2020. "Impact of Stationary and Dynamic Conditions on the U-Value Measurements of Heavy-Multi Leaf Walls by Quantitative IRT," Energies, MDPI, vol. 13(24), pages 1-19, December.
- Bienvenido-Huertas, David & Moyano, Juan & Rodríguez-Jiménez, Carlos E. & Marín, David, 2019. "Applying an artificial neural network to assess thermal transmittance in walls by means of the thermometric method," Applied Energy, Elsevier, vol. 233, pages 1-14.
- Fokaides, Paris A. & Jurelionis, Andrius & Gagyte, Laura & Kalogirou, Soteris A., 2016. "Mock target IR thermography for indoor air temperature measurement," Applied Energy, Elsevier, vol. 164(C), pages 676-685.
- Doo Sung Choi & Myeong Jin Ko, 2017. "Comparison of Various Analysis Methods Based on Heat Flowmeters and Infrared Thermography Measurements for the Evaluation of the In Situ Thermal Transmittance of Opaque Exterior Walls," Energies, MDPI, vol. 10(7), pages 1-22, July.
- Albatici, Rossano & Tonelli, Arnaldo M. & Chiogna, Michela, 2015. "A comprehensive experimental approach for the validation of quantitative infrared thermography in the evaluation of building thermal transmittance," Applied Energy, Elsevier, vol. 141(C), pages 218-228.
- Iole Nardi & Elena Lucchi, 2023. "In Situ Thermal Transmittance Assessment of the Building Envelope: Practical Advice and Outlooks for Standard and Innovative Procedures," Energies, MDPI, vol. 16(8), pages 1-31, April.
- Kylili, Angeliki & Fokaides, Paris A. & Christou, Petros & Kalogirou, Soteris A., 2014. "Infrared thermography (IRT) applications for building diagnostics: A review," Applied Energy, Elsevier, vol. 134(C), pages 531-549.
- Kheira Anissa Tabet Aoul & Rahma Hagi & Rahma Abdelghani & Monaya Syam & Boshra Akhozheya, 2021. "Building Envelope Thermal Defects in Existing and Under-Construction Housing in the UAE; Infrared Thermography Diagnosis and Qualitative Impacts Analysis," Sustainability, MDPI, vol. 13(4), pages 1-23, February.
- David Bienvenido-Huertas, 2020. "Assessing the Environmental Impact of Thermal Transmittance Tests Performed in Façades of Existing Buildings: The Case of Spain," Sustainability, MDPI, vol. 12(15), pages 1-18, August.
- Doo Sung Choi & Myeong Jin Ko, 2019. "Analysis of Convergence Characteristics of Average Method Regulated by ISO 9869-1 for Evaluating In Situ Thermal Resistance and Thermal Transmittance of Opaque Exterior Walls," Energies, MDPI, vol. 12(10), pages 1-18, May.
- Akkurt, G.G. & Aste, N. & Borderon, J. & Buda, A. & Calzolari, M. & Chung, D. & Costanzo, V. & Del Pero, C. & Evola, G. & Huerto-Cardenas, H.E. & Leonforte, F. & Lo Faro, A. & Lucchi, E. & Marletta, L, 2020. "Dynamic thermal and hygrometric simulation of historical buildings: Critical factors and possible solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
- Carlos Morón & Pablo Saiz & Daniel Ferrández & Rubén Felices, 2018. "Comparative Analysis of Infrared Thermography and CFD Modelling for Assessing the Thermal Performance of Buildings," Energies, MDPI, vol. 11(3), pages 1-19, March.
- Cristina Cornaro & Gianluigi Bovesecchi & Filippo Calcerano & Letizia Martinelli & Elena Gigliarelli, 2023. "An HBIM Integrated Approach Using Non-Destructive Techniques (NDT) to Support Energy and Environmental Improvement of Built Heritage: The Case Study of Palazzo Maffei Borghese in Rome," Sustainability, MDPI, vol. 15(14), pages 1-36, July.
- Aïssani, A. & Chateauneuf, A. & Fontaine, J.-P. & Audebert, Ph., 2016. "Quantification of workmanship insulation defects and their impact on the thermal performance of building facades," Applied Energy, Elsevier, vol. 165(C), pages 272-284.
- Flores Larsen, Silvana & Hongn, Marcos, 2014. "Determining the infrared reflectance of specular surfaces by using thermographic analysis," Renewable Energy, Elsevier, vol. 64(C), pages 306-313.
- Luca Evangelisti & Leone Barbaro & Claudia Guattari & Edoardo De Cristo & Roberto De Lieto Vollaro & Francesco Asdrubali, 2024. "Comparison between Direct and Indirect Heat Flux Measurement Techniques: Preliminary Laboratory Tests," Energies, MDPI, vol. 17(12), pages 1-16, June.
More about this item
Keywords
Infrared thermography; Building energy audit; Energy loss; air leakage; thermal bridging; moisture;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:82:y:2018:i:p3:p:3077-3090. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.