IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i19p3762-d272595.html
   My bibliography  Save this article

Improving the Hybrid Electromagnetic Clamping System by Reducing the Leakage Flux and Enhancing the Effective Flux

Author

Listed:
  • Soo-Whang Baek

    (Department of Automotive Engineering, Honam University, 417 Eodeung-daero, Gwangsan-gu, Gwangju 62399, Korea)

  • Keun-Young Yoon

    (Department of Electrical Engineering, Honam University, 417 Eodeung-daero, Gwangsan-gu, Gwangju 62399, Korea)

Abstract

In most industrial fields, mechanical clamping methods are traditionally used to transport heavy loads such as steel structures by fastening the load using bolts and nuts. However, this method can lead to industrial accidents during load transfer and does not consider the weight of the load. Recently, permanent magnet clamping methods have been proposed to prevent such accidents; for example, hybrid electromagnetic clamping systems (H-EMCSs), which combine permanent magnets and electromagnets and can adjust the clamping force according to the load weight. However, few studies have attempted to improve the electromagnetic structure and effective magnetic flux of H-EMCS. Specifically, H-EMCSs control the clamping force using several hybrid electromagnetic modules (H-EMMs); however, the leakage magnetic flux increases with an increasing number of H-EMMs. Therefore, the clamping force should be improved to avoid increasing the leakage magnetic flux. In this study, we propose a novel H-EMM structure and improve its electromagnetic force characteristics by changing the core shape and dimension effect in order to reduce the leakage flux and maximize the effective magnetic flux. Furthermore, we verify the improved electromagnetic force properties by experimentally validating the proposed model. This research can improve the safe and effective transfer of industrial loads.

Suggested Citation

  • Soo-Whang Baek & Keun-Young Yoon, 2019. "Improving the Hybrid Electromagnetic Clamping System by Reducing the Leakage Flux and Enhancing the Effective Flux," Energies, MDPI, vol. 12(19), pages 1-15, October.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:19:p:3762-:d:272595
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/19/3762/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/19/3762/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Seung-Koo Baek & Hyuck-Keun Oh & Seog-Won Kim & Sung-Il Seo, 2018. "A Clamping Force Performance Evaluation of the Electro Mechanical Brake Using PMSM," Energies, MDPI, vol. 11(11), pages 1-12, October.
    2. Liangliang Wei & Baichao Chen & Yushun Liu & Cuihua Tian & Jiaxin Yuan & Yuxin Bu & Tianan Zhu, 2018. "Performance Investigation and Optimization of a Novel Hybrid Saturated-Core Fault-Current Limiter Considering the Leakage Effect," Energies, MDPI, vol. 11(1), pages 1-17, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francesca Oliva & Roberto Sebastiano Faranda, 2023. "Energy Efficiency in Electromagnetic and Electro-Permanent Lifting Systems," Energies, MDPI, vol. 16(8), pages 1-19, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seung-Koo Baek & Hyuck-Keun Oh & Joon-Hyuk Park & Yu-Jeong Shin & Seog-Won Kim, 2019. "Evaluation of Efficient Operation for Electromechanical Brake Using Maximum Torque per Ampere Control," Energies, MDPI, vol. 12(10), pages 1-13, May.
    2. Francesca Oliva & Roberto Sebastiano Faranda, 2023. "Energy Efficiency in Electromagnetic and Electro-Permanent Lifting Systems," Energies, MDPI, vol. 16(8), pages 1-19, April.
    3. Haocong Shen & Fei Mei & Jianyong Zheng & Haoyuan Sha & Changjia She, 2018. "Three-Phase Saturated-Core Fault Current Limiter," Energies, MDPI, vol. 11(12), pages 1-18, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:19:p:3762-:d:272595. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.