A Comprehensive Review of Deep-Learning Applications to Power Quality Analysis
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Artvin-Darien Gonzalez-Abreu & Miguel Delgado-Prieto & Roque-Alfredo Osornio-Rios & Juan-Jose Saucedo-Dorantes & Rene-de-Jesus Romero-Troncoso, 2021. "A Novel Deep Learning-Based Diagnosis Method Applied to Power Quality Disturbances," Energies, MDPI, vol. 14(10), pages 1-17, May.
- Kavaskar Sekar & Karthick Kanagarathinam & Sendilkumar Subramanian & Ellappan Venugopal & C. Udayakumar & Ravi Samikannu, 2022. "An Improved Power Quality Disturbance Detection Using Deep Learning Approach," Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-12, May.
- Dash, P.K. & Prasad, Eluri N.V.D.V. & Jalli, Ravi Kumar & Mishra, S.P., 2022. "Multiple power quality disturbances analysis in photovoltaic integrated direct current microgrid using adaptive morphological filter with deep learning algorithm," Applied Energy, Elsevier, vol. 309(C).
- Yue Shen & Muhammad Abubakar & Hui Liu & Fida Hussain, 2019. "Power Quality Disturbance Monitoring and Classification Based on Improved PCA and Convolution Neural Network for Wind-Grid Distribution Systems," Energies, MDPI, vol. 12(7), pages 1-26, April.
- Zakarya Oubrahim & Yassine Amirat & Mohamed Benbouzid & Mohammed Ouassaid, 2023. "Power Quality Disturbances Characterization Using Signal Processing and Pattern Recognition Techniques: A Comprehensive Review," Energies, MDPI, vol. 16(6), pages 1-41, March.
- Fei Mei & Yong Ren & Qingliang Wu & Chenyu Zhang & Yi Pan & Haoyuan Sha & Jianyong Zheng, 2018. "Online Recognition Method for Voltage Sags Based on a Deep Belief Network," Energies, MDPI, vol. 12(1), pages 1-16, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Paweł Pijarski & Adrian Belowski, 2024. "Application of Methods Based on Artificial Intelligence and Optimisation in Power Engineering—Introduction to the Special Issue," Energies, MDPI, vol. 17(2), pages 1-42, January.
- Osman Akbulut & Muhammed Cavus & Mehmet Cengiz & Adib Allahham & Damian Giaouris & Matthew Forshaw, 2024. "Hybrid Intelligent Control System for Adaptive Microgrid Optimization: Integration of Rule-Based Control and Deep Learning Techniques," Energies, MDPI, vol. 17(10), pages 1-23, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Alexandre Serrano-Fontova & Pablo Casals Torrens & Ricard Bosch, 2019. "Power Quality Disturbances Assessment during Unintentional Islanding Scenarios. A Contribution to Voltage Sag Studies," Energies, MDPI, vol. 12(16), pages 1-21, August.
- Artvin-Darien Gonzalez-Abreu & Roque-Alfredo Osornio-Rios & Arturo-Yosimar Jaen-Cuellar & Miguel Delgado-Prieto & Jose-Alfonso Antonino-Daviu & Athanasios Karlis, 2022. "Advances in Power Quality Analysis Techniques for Electrical Machines and Drives: A Review," Energies, MDPI, vol. 15(5), pages 1-26, March.
- Arafat, M.Y. & Hossain, M.J. & Alam, Md Morshed, 2024. "Machine learning scopes on microgrid predictive maintenance: Potential frameworks, challenges, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
- Paolo Castello & Carlo Muscas & Paolo Attilio Pegoraro & Sara Sulis, 2019. "PMU’s Behavior with Flicker-Generating Voltage Fluctuations: An Experimental Analysis," Energies, MDPI, vol. 12(17), pages 1-14, August.
- Igual, R. & Medrano, C., 2020. "Research challenges in real-time classification of power quality disturbances applicable to microgrids: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
- Paula Remigio-Carmona & Juan-José González-de-la-Rosa & Olivia Florencias-Oliveros & José-María Sierra-Fernández & Javier Fernández-Morales & Manuel-Jesús Espinosa-Gavira & Agustín Agüera-Pérez & José, 2022. "Current Status and Future Trends of Power Quality Analysis," Energies, MDPI, vol. 15(7), pages 1-18, March.
- Andrej Brandis & Denis Pelin & Zvonimir Klaić & Damir Šljivac, 2022. "Identification of Even-Order Harmonics Injected by Semiconverter into the AC Grid," Energies, MDPI, vol. 15(5), pages 1-18, February.
- Giovanni Artale & Nicola Panzavecchia & Valentina Cosentino & Antonio Cataliotti & Manel Ben-Romdhane & Amel Benazza-Ben Yahia & Valeria Boscaino & Noureddine Ben Othman & Vito Ditta & Michele Fiorino, 2023. "CZT-Based Harmonic Analysis in Smart Grid Using Low-Cost Electronic Measurement Boards," Energies, MDPI, vol. 16(10), pages 1-25, May.
- Ruijin Zhu & Xuejiao Gong & Shifeng Hu & Yusen Wang, 2019. "Power Quality Disturbances Classification via Fully-Convolutional Siamese Network and k-Nearest Neighbor," Energies, MDPI, vol. 12(24), pages 1-12, December.
- Juan-José González de-la-Rosa & Manuel Pérez-Donsión, 2020. "Special Issue “Analysis for Power Quality Monitoring”," Energies, MDPI, vol. 13(3), pages 1-6, January.
- Do-In Kim, 2021. "Complementary Feature Extractions for Event Identification in Power Systems Using Multi-Channel Convolutional Neural Network," Energies, MDPI, vol. 14(15), pages 1-15, July.
- Karol Jakub Listewnik, 2022. "A Method for the Evaluation of Power-Generating Sets Based on the Assessment of Power Quality Parameters," Energies, MDPI, vol. 15(14), pages 1-24, July.
- Juan Carlos Bravo-Rodríguez & Francisco J. Torres & María D. Borrás, 2020. "Hybrid Machine Learning Models for Classifying Power Quality Disturbances: A Comparative Study," Energies, MDPI, vol. 13(11), pages 1-20, June.
- Artvin-Darien Gonzalez-Abreu & Miguel Delgado-Prieto & Roque-Alfredo Osornio-Rios & Juan-Jose Saucedo-Dorantes & Rene-de-Jesus Romero-Troncoso, 2021. "A Novel Deep Learning-Based Diagnosis Method Applied to Power Quality Disturbances," Energies, MDPI, vol. 14(10), pages 1-17, May.
- Mariana Syamsudin & Cheng-I Chen & Sunneng Sandino Berutu & Yeong-Chin Chen, 2024. "Efficient Framework to Manipulate Data Compression and Classification of Power Quality Disturbances for Distributed Power System," Energies, MDPI, vol. 17(6), pages 1-20, March.
- Shao, Han & Henriques, Rui & Morais, Hugo & Tedeschi, Elisabetta, 2024. "Power quality monitoring in electric grid integrating offshore wind energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
- Akilu Yunusa-Kaltungo & Ruifeng Cao, 2020. "Towards Developing an Automated Faults Characterisation Framework for Rotating Machines. Part 1: Rotor-Related Faults," Energies, MDPI, vol. 13(6), pages 1-20, March.
- Karthick Kanagarathinam & S. K. Aruna & S. Ravivarman & Mejdl Safran & Sultan Alfarhood & Waleed Alrajhi, 2023. "Enhancing Sustainable Urban Energy Management through Short-Term Wind Power Forecasting Using LSTM Neural Network," Sustainability, MDPI, vol. 15(18), pages 1-18, September.
- Jiajun Cai & Kai Zhang & Hui Jiang, 2023. "Power Quality Disturbance Classification Based on Parallel Fusion of CNN and GRU," Energies, MDPI, vol. 16(10), pages 1-12, May.
- Zakarya Oubrahim & Yassine Amirat & Mohamed Benbouzid & Mohammed Ouassaid, 2023. "Power Quality Disturbances Characterization Using Signal Processing and Pattern Recognition Techniques: A Comprehensive Review," Energies, MDPI, vol. 16(6), pages 1-41, March.
More about this item
Keywords
deep-learning (DL); machine learning (ML); artificial intelligence (AI); power quality monitoring and detection; feature extraction; classification of PQ disturbance; artificial neural network (ANN);All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:11:p:4406-:d:1159439. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.