IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v34y2009i11p2515-2523.html
   My bibliography  Save this article

Estimating operating cell temperature of BIPV modules in Thailand

Author

Listed:
  • Trinuruk, Piyatida
  • Sorapipatana, Chumnong
  • Chenvidhya, Dhirayut

Abstract

Several models have been developed to estimate the operating cell temperatures of photovoltaic (PV) modules because they directly affect the performance of each PV module. In this study, two prediction models used most commonly, the nominal operating cell temperature (NOCT) model and the Sandia National Laboratory temperature prediction model (SNL), were investigated for their suitability in the prediction of PV module's temperatures for building integrated photovoltaic (BIPV) installation in the tropical climate conditions of Thailand. It was found that, in general, the SNL model tends to give better results of temperature prediction than those of the NOCT model. Nevertheless, both models are strongly over-biased in temperature predictions. The discrepancies of the predictions are basically caused by the dissimilarity of the BIPV installation and the standard installation as specified by the models, rather than the effect of differences in climatic conditions between the temperate and tropical zones. In the worst case, it was found that the highest value of the mean bias error (MBE) is +8°C, or equivalent to +21% of the mean observed temperature, and the root mean square error (RMSE) is ±10°C, or equivalent to ±24% of the mean observed temperature. However, although these errors were large, their effects on the accuracy of the final prediction of the electrical power output generated by the PV module over a long term would not be great. The error of the expected generated energy output would not be more than 6% of the averaged actual energy output, which is acceptable for most applications.

Suggested Citation

  • Trinuruk, Piyatida & Sorapipatana, Chumnong & Chenvidhya, Dhirayut, 2009. "Estimating operating cell temperature of BIPV modules in Thailand," Renewable Energy, Elsevier, vol. 34(11), pages 2515-2523.
  • Handle: RePEc:eee:renene:v:34:y:2009:i:11:p:2515-2523
    DOI: 10.1016/j.renene.2009.02.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148109000962
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2009.02.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alonso García, M.C. & Balenzategui, J.L., 2004. "Estimation of photovoltaic module yearly temperature and performance based on Nominal Operation Cell Temperature calculations," Renewable Energy, Elsevier, vol. 29(12), pages 1997-2010.
    2. Wang, Yiping & Tian, Wei & Ren, Jianbo & Zhu, Li & Wang, Qingzhao, 2006. "Influence of a building's integrated-photovoltaics on heating and cooling loads," Applied Energy, Elsevier, vol. 83(9), pages 989-1003, September.
    3. Malik, A.Q. & Damit, Salmi Jan Bin Haji, 2003. "Outdoor testing of single crystal silicon solar cells," Renewable Energy, Elsevier, vol. 28(9), pages 1433-1445.
    4. Mattei, M. & Notton, G. & Cristofari, C. & Muselli, M. & Poggi, P., 2006. "Calculation of the polycrystalline PV module temperature using a simple method of energy balance," Renewable Energy, Elsevier, vol. 31(4), pages 553-567.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Socrates Kaplanis & Eleni Kaplani, 2018. "A New Dynamic Model to Predict Transient and Steady State PV Temperatures Taking into Account the Environmental Conditions," Energies, MDPI, vol. 12(1), pages 1-17, December.
    2. Katsikogiannis, Odysseas Alexandros & Ziar, Hesan & Isabella, Olindo, 2022. "Integration of bifacial photovoltaics in agrivoltaic systems: A synergistic design approach," Applied Energy, Elsevier, vol. 309(C).
    3. Savvakis, Nikolaos & Tsoutsos, Theocharis, 2015. "Performance assessment of a thin film photovoltaic system under actual Mediterranean climate conditions in the island of Crete," Energy, Elsevier, vol. 90(P2), pages 1435-1455.
    4. Cannavale, Alessandro & Hörantner, Maximilian & Eperon, Giles E. & Snaith, Henry J. & Fiorito, Francesco & Ayr, Ubaldo & Martellotta, Francesco, 2017. "Building integration of semitransparent perovskite-based solar cells: Energy performance and visual comfort assessment," Applied Energy, Elsevier, vol. 194(C), pages 94-107.
    5. Serrano-Luján, L. & Toledo, C. & Colmenar, J.M. & Abad, J. & Urbina, A., 2022. "Accurate thermal prediction model for building-integrated photovoltaics systems using guided artificial intelligence algorithms," Applied Energy, Elsevier, vol. 315(C).
    6. Rahmani, Javad & Sadeghian, Ehsan & Dolatiary, Soheil, 2018. "Comparison between ideal and estimated pv parameters using evolutionary algorithms to save the economic costs," MPRA Paper 91708, University Library of Munich, Germany.
    7. Pillai, Rohitkumar & Aaditya, Gayathri & Mani, Monto & Ramamurthy, Praveen, 2014. "Cell (module) temperature regulated performance of a building integrated photovoltaic system in tropical conditions," Renewable Energy, Elsevier, vol. 72(C), pages 140-148.
    8. Rustemli, Sabir & Dincer, Furkan & Unal, Emin & Karaaslan, Muharrem & Sabah, Cumali, 2013. "The analysis on sun tracking and cooling systems for photovoltaic panels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 598-603.
    9. D'Orazio, M. & Di Perna, C. & Di Giuseppe, E., 2014. "Experimental operating cell temperature assessment of BIPV with different installation configurations on roofs under Mediterranean climate," Renewable Energy, Elsevier, vol. 68(C), pages 378-396.
    10. Kundakci Koyunbaba, Basak & Yilmaz, Zerrin, 2012. "The comparison of Trombe wall systems with single glass, double glass and PV panels," Renewable Energy, Elsevier, vol. 45(C), pages 111-118.
    11. Obiwulu, Anthony Umunnakwe & Erusiafe, Nald & Olopade, Muteeu Abayomi & Nwokolo, Samuel Chukwujindu, 2020. "Modeling and optimization of back temperature models of mono-crystalline silicon modules with special focus on the effect of meteorological and geographical parameters on PV performance," Renewable Energy, Elsevier, vol. 154(C), pages 404-431.
    12. Mandelli, Stefano & Barbieri, Jacopo & Mereu, Riccardo & Colombo, Emanuela, 2016. "Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1621-1646.
    13. Gulkowski, Slawomir & Muñoz Diez, José Vicente & Aguilera Tejero, Jorge & Nofuentes, Gustavo, 2019. "Computational modeling and experimental analysis of heterojunction with intrinsic thin-layer photovoltaic module under different environmental conditions," Energy, Elsevier, vol. 172(C), pages 380-390.
    14. Mahesh Vinayak Hadole & Kamlesh Narayan Tiwari & Prabodh Bajpai, 2021. "Energy generation and flow rate prediction of photovoltaic water pumping system for irrigation," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 6722-6733, May.
    15. Kaplanis, S. & Kaplani, E. & Kaldellis, J.K., 2022. "PV temperature and performance prediction in free-standing, BIPV and BAPV incorporating the effect of temperature and inclination on the heat transfer coefficients and the impact of wind, efficiency a," Renewable Energy, Elsevier, vol. 181(C), pages 235-249.
    16. Royo, Patricia & Ferreira, Víctor J. & López-Sabirón, Ana M. & Ferreira, Germán, 2016. "Hybrid diagnosis to characterise the energy and environmental enhancement of photovoltaic modules using smart materials," Energy, Elsevier, vol. 101(C), pages 174-189.
    17. Ko, Jinyoung & Jeong, Jae-Weon, 2021. "Annual performance evaluation of thermoelectric generator-assisted building-integrated photovoltaic system with phase change material," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    18. Kesler, Selami & Kivrak, Sinan & Dincer, Furkan & Rustemli, Sabir & Karaaslan, Muharrem & Unal, Emin & Erdiven, Utku, 2014. "The analysis of PV power potential and system installation in Manavgat, Turkey—A case study in winter season," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 671-680.
    19. Chatzipanagi, Anatoli & Frontini, Francesco & Virtuani, Alessandro, 2016. "BIPV-temp: A demonstrative Building Integrated Photovoltaic installation," Applied Energy, Elsevier, vol. 173(C), pages 1-12.
    20. Omrany, Hossein & Ghaffarianhoseini, Ali & Ghaffarianhoseini, Amirhosein & Raahemifar, Kaamran & Tookey, John, 2016. "Application of passive wall systems for improving the energy efficiency in buildings: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1252-1269.
    21. Boccalatte, Alessia & Thebault, Martin & Paolini, Riccardo & Fossa, Marco & Ramousse, Julien & Ménézo, Christophe & Santamouris, Mattheos, 2023. "Assessing the combined effects of local climate and mounting configuration on the electrical and thermal performance of photovoltaic systems. Application to the greater Sydney area," Renewable Energy, Elsevier, vol. 219(P1).
    22. Ayompe, L.M. & Duffy, A. & McCormack, S.J. & Conlon, M., 2010. "Validated real-time energy models for small-scale grid-connected PV-systems," Energy, Elsevier, vol. 35(10), pages 4086-4091.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rawat, Rahul & Kaushik, S.C. & Lamba, Ravita, 2016. "A review on modeling, design methodology and size optimization of photovoltaic based water pumping, standalone and grid connected system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1506-1519.
    2. D'Orazio, M. & Di Perna, C. & Di Giuseppe, E., 2014. "Experimental operating cell temperature assessment of BIPV with different installation configurations on roofs under Mediterranean climate," Renewable Energy, Elsevier, vol. 68(C), pages 378-396.
    3. Sharples, Steve & Radhi, Hassan, 2013. "Assessing the technical and economic performance of building integrated photovoltaics and their value to the GCC society," Renewable Energy, Elsevier, vol. 55(C), pages 150-159.
    4. Hussain, F. & Othman, M.Y.H & Sopian, K. & Yatim, B. & Ruslan, H. & Othman, H., 2013. "Design development and performance evaluation of photovoltaic/thermal (PV/T) air base solar collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 431-441.
    5. Eldin, S.A. Sharaf & Abd-Elhady, M.S. & Kandil, H.A., 2016. "Feasibility of solar tracking systems for PV panels in hot and cold regions," Renewable Energy, Elsevier, vol. 85(C), pages 228-233.
    6. Ayompe, L.M. & Duffy, A. & McCormack, S.J. & Conlon, M., 2010. "Validated real-time energy models for small-scale grid-connected PV-systems," Energy, Elsevier, vol. 35(10), pages 4086-4091.
    7. Bizzarri, Federico & Brambilla, Angelo & Caretta, Lorenzo & Guardiani, Carlo, 2015. "Monitoring performance and efficiency of photovoltaic parks," Renewable Energy, Elsevier, vol. 78(C), pages 314-321.
    8. Zia R. Tahir & Ammara Kanwal & Muhammad Asim & M. Bilal & Muhammad Abdullah & Sabeena Saleem & M. A. Mujtaba & Ibham Veza & Mohamed Mousa & M. A. Kalam, 2022. "Effect of Temperature and Wind Speed on Efficiency of Five Photovoltaic Module Technologies for Different Climatic Zones," Sustainability, MDPI, vol. 14(23), pages 1-32, November.
    9. Skoplaki, E. & Palyvos, J.A., 2009. "Operating temperature of photovoltaic modules: A survey of pertinent correlations," Renewable Energy, Elsevier, vol. 34(1), pages 23-29.
    10. Docimo, D.J. & Ghanaatpishe, M. & Mamun, A., 2017. "Extended Kalman Filtering to estimate temperature and irradiation for maximum power point tracking of a photovoltaic module," Energy, Elsevier, vol. 120(C), pages 47-57.
    11. Bevilacqua, Piero & Perrella, Stefania & Bruno, Roberto & Arcuri, Natale, 2021. "An accurate thermal model for the PV electric generation prediction: long-term validation in different climatic conditions," Renewable Energy, Elsevier, vol. 163(C), pages 1092-1112.
    12. Santiago, I. & Trillo-Montero, D. & Moreno-Garcia, I.M. & Pallarés-López, V. & Luna-Rodríguez, J.J., 2018. "Modeling of photovoltaic cell temperature losses: A review and a practice case in South Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 70-89.
    13. Kaldellis, John K. & Kapsali, Marina & Kavadias, Kosmas A., 2014. "Temperature and wind speed impact on the efficiency of PV installations. Experience obtained from outdoor measurements in Greece," Renewable Energy, Elsevier, vol. 66(C), pages 612-624.
    14. Kong, Chengdong & Xu, Zilin & Yao, Qiang, 2013. "Outdoor performance of a low-concentrated photovoltaic–thermal hybrid system with crystalline silicon solar cells," Applied Energy, Elsevier, vol. 112(C), pages 618-625.
    15. Rehman, Shafiqur & El-Amin, Ibrahim, 2012. "Performance evaluation of an off-grid photovoltaic system in Saudi Arabia," Energy, Elsevier, vol. 46(1), pages 451-458.
    16. Yadav, S. & Panda, S.K. & Tripathy, M., 2018. "Performance of building integrated photovoltaic thermal system with PV module installed at optimum tilt angle and influenced by shadow," Renewable Energy, Elsevier, vol. 127(C), pages 11-23.
    17. Mayer, Martin János & Yang, Dazhi & Szintai, Balázs, 2023. "Comparing global and regional downscaled NWP models for irradiance and photovoltaic power forecasting: ECMWF versus AROME," Applied Energy, Elsevier, vol. 352(C).
    18. Burillo, Daniel & Chester, Mikhail V. & Pincetl, Stephanie & Fournier, Eric, 2019. "Electricity infrastructure vulnerabilities due to long-term growth and extreme heat from climate change in Los Angeles County," Energy Policy, Elsevier, vol. 128(C), pages 943-953.
    19. Kaplanis, S. & Kaplani, E. & Kaldellis, J.K., 2022. "PV temperature and performance prediction in free-standing, BIPV and BAPV incorporating the effect of temperature and inclination on the heat transfer coefficients and the impact of wind, efficiency a," Renewable Energy, Elsevier, vol. 181(C), pages 235-249.
    20. Wang, Chuyao & Ji, Jie & Uddin, Md Muin & Yu, Bendong & Song, Zhiying, 2021. "The study of a double-skin ventilated window integrated with CdTe cells in a rural building," Energy, Elsevier, vol. 215(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:34:y:2009:i:11:p:2515-2523. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.