IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i9p2414-d169367.html
   My bibliography  Save this article

Heat Transfer Behaviors in Horizontal Wells Considering the Effects of Drill Pipe Rotation, and Hydraulic and Mechanical Frictions during Drilling Procedures

Author

Listed:
  • Xin Chang

    (State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Science, Wuhan 430071, Hubei, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Jun Zhou

    (State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Science, Wuhan 430071, Hubei, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Yintong Guo

    (State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Science, Wuhan 430071, Hubei, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Shiming He

    (State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, Sichuan, China)

  • Lei Wang

    (State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Science, Wuhan 430071, Hubei, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Yulin Chen

    (PetroChina Co. Ltd., Chuandong Drilling Company, Chongqing 401147, China)

  • Ming Tang

    (State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, Sichuan, China)

  • Rui Jian

    (CNOOC Ltd., Zhanjiang Branch, Zhanjiang 524057, Guangdong, China)

Abstract

Horizontal wells are increasingly being utilized in the exploration and development of oil and gas resources. However, the high temperature that occurs during drilling processes leads to a number of problems, such as the deterioration of drilling fluid properties and borehole instability. Therefore, the insight into heat transfer behaviors in horizontal wells is certainly advantageous. This study presents an integrated numerical model for predicting the temperature distribution during horizontal wells drilling considering the effects of drill pipe rotations, and hydraulic (i.e., circulating pressure losses) and mechanical frictions. A full implicit finite difference method was applied to solve this model. The results revealed that the mechanical frictions affect more on wellbore temperature variation than the effects of heat transfer intensification and circulating pressure losses; Moreover, the drilling fluid temperature was found higher than the stratum temperature at horizontal section, the temperature difference at the bottom hole reached up to 16 °C if pressure drops, heat transfer strengthened by rotations and mechanical frictions were all taken into account. This research could be utilized as a theoretical reference for predicting temperature distributions and estimating risks in horizontal wells drilling.

Suggested Citation

  • Xin Chang & Jun Zhou & Yintong Guo & Shiming He & Lei Wang & Yulin Chen & Ming Tang & Rui Jian, 2018. "Heat Transfer Behaviors in Horizontal Wells Considering the Effects of Drill Pipe Rotation, and Hydraulic and Mechanical Frictions during Drilling Procedures," Energies, MDPI, vol. 11(9), pages 1-28, September.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:9:p:2414-:d:169367
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/9/2414/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/9/2414/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, Mou & Li, Xiaoxiao & Deng, Jianmin & Meng, Yingfeng & Li, Gao, 2015. "Prediction of wellbore and formation temperatures during circulation and shut-in stages under kick conditions," Energy, Elsevier, vol. 91(C), pages 1018-1029.
    2. Ling Miao & Mehrdad Massoudi, 2015. "Effects of Shear Dependent Viscosity and Variable Thermal Conductivity on the Flow and Heat Transfer in a Slurry," Energies, MDPI, vol. 8(10), pages 1-29, October.
    3. Wei-Tao Wu & Nadine Aubry & James F. Antaki & Mark L. McKoy & Mehrdad Massoudi, 2017. "Heat Transfer in a Drilling Fluid with Geothermal Applications," Energies, MDPI, vol. 10(9), pages 1-18, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiao, Dong & Xiao, Hongyu & Song, Wei & Li, Gao & Zhang, Jie & Deng, Hu & Guo, Boyun & Tang, Gui & Duan, Mubai & Tang, Haijun, 2024. "Utilization method of low-grade thermal energy during drilling based on insulated Drill pipe," Renewable Energy, Elsevier, vol. 225(C).
    2. Wenqian Lin & Hailin Yang & Jianzhong Lin, 2022. "Friction Factor and Heat Transfer of Giesekus-Fluid-Based Nanofluids in a Pipe Flow," Energies, MDPI, vol. 15(9), pages 1-16, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Hongwei & Li, Jun & Liu, Gonghui & Wang, Chao & Li, Mengbo & Jiang, Hailong, 2019. "Numerical analysis of transient wellbore thermal behavior in dynamic deepwater multi-gradient drilling," Energy, Elsevier, vol. 179(C), pages 138-153.
    2. Xiao-Hui Sun & Hongbin Yan & Mehrdad Massoudi & Zhi-Hua Chen & Wei-Tao Wu, 2018. "Numerical Simulation of Nanofluid Suspensions in a Geothermal Heat Exchanger," Energies, MDPI, vol. 11(4), pages 1-18, April.
    3. Zhang, Zheng & Xiong, Youming & Gao, Yun & Liu, Liming & Wang, Menghao & Peng, Geng, 2018. "Wellbore temperature distribution during circulation stage when well-kick occurs in a continuous formation from the bottom-hole," Energy, Elsevier, vol. 164(C), pages 964-977.
    4. Yue Hua & Jiang-Zhou Peng & Zhi-Fu Zhou & Wei-Tao Wu & Yong He & Mehrdad Massoudi, 2022. "Thermal Performance in Convection Flow of Nanofluids Using a Deep Convolutional Neural Network," Energies, MDPI, vol. 15(21), pages 1-16, November.
    5. Abbas, Ahmed K. & Bashikh, Ali A. & Abbas, Hayder & Mohammed, Haider Q., 2019. "Intelligent decisions to stop or mitigate lost circulation based on machine learning," Energy, Elsevier, vol. 183(C), pages 1104-1113.
    6. Song, Xianzhi & Wang, Gaosheng & Shi, Yu & Li, Ruixia & Xu, Zhengming & Zheng, Rui & Wang, Yu & Li, Jiacheng, 2018. "Numerical analysis of heat extraction performance of a deep coaxial borehole heat exchanger geothermal system," Energy, Elsevier, vol. 164(C), pages 1298-1310.
    7. Qin-Liu Cao & Mehrdad Massoudi & Wen-He Liao & Feng Feng & Wei-Tao Wu, 2019. "Flow Characteristics of Water-HPC Gel in Converging Tubes and Tapered Injectors," Energies, MDPI, vol. 12(9), pages 1-16, April.
    8. Chengcheng Tao & Barbara G. Kutchko & Eilis Rosenbaum & Wei-Tao Wu & Mehrdad Massoudi, 2019. "Steady Flow of a Cement Slurry," Energies, MDPI, vol. 12(13), pages 1-25, July.
    9. Ruiyao Zhang & Jun Li & Gonghui Liu & Hongwei Yang & Hailong Jiang, 2019. "Analysis of Coupled Wellbore Temperature and Pressure Calculation Model and Influence Factors under Multi-Pressure System in Deep-Water Drilling," Energies, MDPI, vol. 12(18), pages 1-27, September.
    10. Hao Zhou & Feng Feng & Qin-Liu Cao & Changsheng Zhou & Wei-Tao Wu & Mehrdad Massoudi, 2022. "Heat Transfer and Flow of a Gel Fuel in Corrugated Channels," Energies, MDPI, vol. 15(19), pages 1-19, October.
    11. Zhang, Nanlin & Chen, Zhangxin & Luo, Zhifeng & Liu, Pingli & Chen, Weiyu & Liu, Fushen, 2023. "Effect of the phase-transition fluid reaction heat on wellbore temperature in self-propping phase-transition fracturing technology," Energy, Elsevier, vol. 265(C).
    12. Bo Feng & Jin Li & Zaoyuan Li & Xuning Wu & Jian Liu & Sheng Huang & Jinfei Sun, 2023. "Enhancing Environmental Protection in Oil and Gas Wells through Improved Prediction Method of Cement Slurry Temperature," Energies, MDPI, vol. 16(13), pages 1-17, June.
    13. Yang, Mou & Luo, Dayu & Chen, Yuanhang & Li, Gao & Tang, Daqian & Meng, Yingfeng, 2019. "Establishing a practical method to accurately determine and manage wellbore thermal behavior in high-temperature drilling," Applied Energy, Elsevier, vol. 238(C), pages 1471-1483.
    14. Wang, Yi & Zhang, Liang & Cui, Guodong & Kang, Jun & Ren, Shaoran, 2019. "Geothermal development and power generation by circulating water and isobutane via a closed-loop horizontal well from hot dry rocks," Renewable Energy, Elsevier, vol. 136(C), pages 909-922.
    15. Ameenuddin, Mohammed & Anand, Mohan & Massoudi, Mehrdad, 2019. "Effects of shear-dependent viscosity and hematocrit on blood flow," Applied Mathematics and Computation, Elsevier, vol. 356(C), pages 299-311.
    16. Mao, Liangjie & Wei, Changjiang & Jia, Hai & Lu, Kechong, 2023. "Prediction model of drilling wellbore temperature considering bit heat generation and variation of mud thermophysical parameters," Energy, Elsevier, vol. 284(C).
    17. Mehrdad Massoudi & Jeongho Kim & Ping Wang, 2016. "On the Heat Flux Vector and Thermal Conductivity of Slags: A Brief Review," Energies, MDPI, vol. 9(1), pages 1-23, January.
    18. Kang, Yili & Ma, Chenglin & Xu, Chengyuan & You, Lijun & You, Zhenjiang, 2023. "Prediction of drilling fluid lost-circulation zone based on deep learning," Energy, Elsevier, vol. 276(C).
    19. Zhang, Zheng & Xiong, Youming & Pu, Hui & Sun, Zheng, 2021. "Effect of the variations of thermophysical properties of drilling fluids with temperature on wellbore temperature calculation during drilling," Energy, Elsevier, vol. 214(C).
    20. Bu, Xianbiao & Ran, Yunmin & Zhang, Dongdong, 2019. "Experimental and simulation studies of geothermal single well for building heating," Renewable Energy, Elsevier, vol. 143(C), pages 1902-1909.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:9:p:2414-:d:169367. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.