IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v214y2021ics0360544220321629.html
   My bibliography  Save this article

Effect of the variations of thermophysical properties of drilling fluids with temperature on wellbore temperature calculation during drilling

Author

Listed:
  • Zhang, Zheng
  • Xiong, Youming
  • Pu, Hui
  • Sun, Zheng

Abstract

During the drilling process, the variations of the thermophysical properties of drilling fluid have an important effect on the wellbore temperature distribution. As the wellbore temperature changes, the thermophysical properties of drilling fluid change. In this work, the effect of the variations of density, thermal conductivity, specific heat capacity, and viscosity of drilling fluid with temperature on wellbore temperature calcilation during drilling was studied using water as drilling fluid, and the extent to which each thermophysical property affected the calculation of the wellbore temperature distribution was compared. The calculation results show that the variations of density and thermal conductivity of drilling fluid with temperature have a little effect on wellbore temperature calcilation, and the variation of specific heat capacity of drilling fluid with temperature has negligible effect on wellbore temperature calcilation, while the variation of viscosity of drilling fluid with temperature has significant effect on wellbore temperature calcilation. Therefore, whether to consider the variations of thermophysical properties of drilling fluid with temperature can have a certain effect on the calculation of wellbore temperature distribution during drilling. The thermophysical property of the drilling fluid that is very sensitive to temperature variation should be fully considered during the wellbore temperature distribution calculation.

Suggested Citation

  • Zhang, Zheng & Xiong, Youming & Pu, Hui & Sun, Zheng, 2021. "Effect of the variations of thermophysical properties of drilling fluids with temperature on wellbore temperature calculation during drilling," Energy, Elsevier, vol. 214(C).
  • Handle: RePEc:eee:energy:v:214:y:2021:i:c:s0360544220321629
    DOI: 10.1016/j.energy.2020.119055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220321629
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.119055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Zheng & Xiong, Youming & Gao, Yun & Liu, Liming & Wang, Menghao & Peng, Geng, 2018. "Wellbore temperature distribution during circulation stage when well-kick occurs in a continuous formation from the bottom-hole," Energy, Elsevier, vol. 164(C), pages 964-977.
    2. Yang, Mou & Li, Xiaoxiao & Deng, Jianmin & Meng, Yingfeng & Li, Gao, 2015. "Prediction of wellbore and formation temperatures during circulation and shut-in stages under kick conditions," Energy, Elsevier, vol. 91(C), pages 1018-1029.
    3. Lyu, Xinrun & Zhang, Shicheng & Ma, Xinfang & Wang, Fei & Mou, Jianye, 2018. "Numerical study of non-isothermal flow and wellbore heat transfer characteristics in CO2 fracturing," Energy, Elsevier, vol. 156(C), pages 555-568.
    4. Cui, Guodong & Ren, Shaoran & Zhang, Liang & Ezekiel, Justin & Enechukwu, Chioma & Wang, Yi & Zhang, Rui, 2017. "Geothermal exploitation from hot dry rocks via recycling heat transmission fluid in a horizontal well," Energy, Elsevier, vol. 128(C), pages 366-377.
    5. Yang, Hongwei & Li, Jun & Liu, Gonghui & Wang, Chao & Li, Mengbo & Jiang, Hailong, 2019. "Numerical analysis of transient wellbore thermal behavior in dynamic deepwater multi-gradient drilling," Energy, Elsevier, vol. 179(C), pages 138-153.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Xishun & Shi, Junfeng & Zhao, Ruidong & Ma, Gaoqiang & Li, Zhongyang & Wang, Xiaofei & Zhang, Jinke, 2024. "Simulation of wellbore pipe flow in oil production engineering: Offshore concentric double-tube CO2-assisted superheated steam wellbore during SAGD process of heavy oil reservoirs," Energy, Elsevier, vol. 294(C).
    2. Zhang, Nanlin & Chen, Zhangxin & Luo, Zhifeng & Liu, Pingli & Chen, Weiyu & Liu, Fushen, 2023. "Effect of the phase-transition fluid reaction heat on wellbore temperature in self-propping phase-transition fracturing technology," Energy, Elsevier, vol. 265(C).
    3. Bo Feng & Jin Li & Zaoyuan Li & Xuning Wu & Jian Liu & Sheng Huang & Jinfei Sun, 2023. "Enhancing Environmental Protection in Oil and Gas Wells through Improved Prediction Method of Cement Slurry Temperature," Energies, MDPI, vol. 16(13), pages 1-17, June.
    4. Guo, Yide & Li, Xibing & Huang, Linqi, 2023. "Experimental investigation on the sudden cooling effect of oil-based drilling fluid on the dynamic compressive behavior of deep shale reservoirs," Energy, Elsevier, vol. 282(C).
    5. Zhang, Zheng & Wei, Yongqi & Xiong, Youming & Peng, Geng & Wang, Guorong & Lu, Jingsheng & Zhong, Lin & Wang, Jingpeng, 2022. "Influence of the location of drilling fluid loss on wellbore temperature distribution during drilling," Energy, Elsevier, vol. 244(PB).
    6. Jingpeng Wang & Youming Xiong & Zongyu Lu & Jiangang Shi & Jiwei Wu, 2021. "Influence of Volume Fracturing on Casing Stress in Horizontal Wells," Energies, MDPI, vol. 14(8), pages 1-14, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruiyao Zhang & Jun Li & Gonghui Liu & Hongwei Yang & Hailong Jiang, 2019. "Analysis of Coupled Wellbore Temperature and Pressure Calculation Model and Influence Factors under Multi-Pressure System in Deep-Water Drilling," Energies, MDPI, vol. 12(18), pages 1-27, September.
    2. Zhang, Nanlin & Chen, Zhangxin & Luo, Zhifeng & Liu, Pingli & Chen, Weiyu & Liu, Fushen, 2023. "Effect of the phase-transition fluid reaction heat on wellbore temperature in self-propping phase-transition fracturing technology," Energy, Elsevier, vol. 265(C).
    3. Yang, Hongwei & Li, Jun & Zhang, Hui & Jiang, Jiwei & Guo, Boyun & Zhang, Geng, 2022. "Numerical analysis of heat transfer rate and wellbore temperature distribution under different circulating modes of Reel-well drilling," Energy, Elsevier, vol. 254(PB).
    4. Yang, Hongwei & Li, Jun & Liu, Gonghui & Wang, Chao & Li, Mengbo & Jiang, Hailong, 2019. "Numerical analysis of transient wellbore thermal behavior in dynamic deepwater multi-gradient drilling," Energy, Elsevier, vol. 179(C), pages 138-153.
    5. Wang, Huaijing, 2023. "Modeling of multiple thermal fluid circulation in horizontal section of wellbores," Energy, Elsevier, vol. 282(C).
    6. Abbas, Ahmed K. & Bashikh, Ali A. & Abbas, Hayder & Mohammed, Haider Q., 2019. "Intelligent decisions to stop or mitigate lost circulation based on machine learning," Energy, Elsevier, vol. 183(C), pages 1104-1113.
    7. Song, Xianzhi & Wang, Gaosheng & Shi, Yu & Li, Ruixia & Xu, Zhengming & Zheng, Rui & Wang, Yu & Li, Jiacheng, 2018. "Numerical analysis of heat extraction performance of a deep coaxial borehole heat exchanger geothermal system," Energy, Elsevier, vol. 164(C), pages 1298-1310.
    8. Wang, Yi & Zhang, Liang & Cui, Guodong & Kang, Jun & Ren, Shaoran, 2019. "Geothermal development and power generation by circulating water and isobutane via a closed-loop horizontal well from hot dry rocks," Renewable Energy, Elsevier, vol. 136(C), pages 909-922.
    9. Zhang, Xishun & Shi, Junfeng & Zhao, Ruidong & Ma, Gaoqiang & Li, Zhongyang & Wang, Xiaofei & Zhang, Jinke, 2024. "Simulation of wellbore pipe flow in oil production engineering: Offshore concentric double-tube CO2-assisted superheated steam wellbore during SAGD process of heavy oil reservoirs," Energy, Elsevier, vol. 294(C).
    10. Bu, Xianbiao & Ran, Yunmin & Zhang, Dongdong, 2019. "Experimental and simulation studies of geothermal single well for building heating," Renewable Energy, Elsevier, vol. 143(C), pages 1902-1909.
    11. Hu, Xincheng & Banks, Jonathan & Wu, Linping & Liu, Wei Victor, 2020. "Numerical modeling of a coaxial borehole heat exchanger to exploit geothermal energy from abandoned petroleum wells in Hinton, Alberta," Renewable Energy, Elsevier, vol. 148(C), pages 1110-1123.
    12. Al Saedi, A.Q. & Sharma, P. & Kabir, C.S., 2021. "A novel cyclical wellbore-fluid circulation strategy for extracting geothermal energy," Energy, Elsevier, vol. 235(C).
    13. Pei, Yingju & Liu, Qingyou & Wang, Chuan & Wang, Guorong, 2021. "Energy efficiency prediction model and energy characteristics of subsea disc pump based on velocity slip and similarity theory," Energy, Elsevier, vol. 229(C).
    14. Hou, Xinglan & Zhong, Xiuping & Nie, Shuaishuai & Wang, Yafei & Tu, Guigang & Ma, Yingrui & Liu, Kunyan & Chen, Chen, 2024. "Study on the heat recovery behavior of horizontal well systems in the Qiabuqia geothermal area of the Gonghe Basin, China," Energy, Elsevier, vol. 286(C).
    15. Zhang, Zheng & Xiong, Youming & Gao, Yun & Liu, Liming & Wang, Menghao & Peng, Geng, 2018. "Wellbore temperature distribution during circulation stage when well-kick occurs in a continuous formation from the bottom-hole," Energy, Elsevier, vol. 164(C), pages 964-977.
    16. Song, Weiqiang & Wang, Chunguang & Du, Yukun & Shen, Baotang & Chen, Shaojie & Jiang, Yujing, 2020. "Comparative analysis on the heat transfer efficiency of supercritical CO2 and H2O in the production well of enhanced geothermal system," Energy, Elsevier, vol. 205(C).
    17. Yang, Hongwei & Li, Jun & Zhang, Hui & Jiang, Jiwei & Guo, Boyun & Gao, Reyu & Zhang, Geng, 2022. "Thermal behavior prediction and adaptation analysis of a reelwell drilling method for closed-loop geothermal system," Applied Energy, Elsevier, vol. 320(C).
    18. Rui-Jia Liu & Lin-Rui Jia & Wen-Shuo Zhang & Ming-Zhi Yu & Xu-Dong Zhao & Ping Cui, 2024. "Study of Heat Transfer Characteristics and Economic Analysis of a Closed Deep Coaxial Geothermal Heat Exchanger Retrofitted from an Abandoned Oil Well," Sustainability, MDPI, vol. 16(4), pages 1-21, February.
    19. Jiansheng, Wang & Lide, Su & Qiang, Zhu & Jintao, Niu, 2022. "Numerical investigation on power generation performance of enhanced geothermal system with horizontal well," Applied Energy, Elsevier, vol. 325(C).
    20. Damian Janiga & Jakub Kwaśnik & Paweł Wojnarowski, 2022. "Utilization of Discrete Fracture Network (DFN) in Modelling and Simulation of a Horizontal Well-Doublet Enhanced Geothermal System (EGS) with Sensitivity Analysis of Key Production Parameters," Energies, MDPI, vol. 15(23), pages 1-19, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:214:y:2021:i:c:s0360544220321629. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.